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Abstract. This work is concerned with assessing the performance of a numerical method,
which combines an adaptive mesh refinement technique, an implicit-explicit time stepping
strategy, and a linear multilevel-multigrid methodology, when applied to a challenging real-
life problem: a three-dimensional turbulent jet flow. Typically, whenever a moving fluid
emerges from a narrow opening into an otherwise quiescent fluid, shear is created between the
entering and the ambient fluids, causing fluid instabilities, turbulence, and mixing at down-
stream. Turbulent jets represent an important class of fluid flow phenomena which occurs
in many instances both in environmental and in industrial applications such as waste water
discharges into rivers, plumes from smokestacks, and flames on combustion nozzles. Math-
ematically, the fluid dynamics is modeled by the non-steady Navier-Stokes equations for a
three-dimensional incompressible flow whose material properties vary. The turbulence mod-
eling is given by the large eddy simulation approach for which a careful selection of the
Smagorinsky constant is performed. To resolve accurately and efficiently sharp gradients,
vorticity shedding, and localized small length scale flow features (e.g. the ones present in
high turbulence regions), dynamic adaptive mesh refinements are employed which form a
level hierarchy composed by a set of nested, Cartesian grid patches (block-structured grid).
That spatial adaptation is used in conjunction with a variable time step, linearly implicit
time integration scheme, based on a semi backward difference formula (SBDF), especially
designed to work with the non-linear diffusive term arising from the turbulent viscosity. The
NS solver is based on an increment-pressure projection method. Information on how often the
mesh adapts itself, on the number of computational cells in use, on the stability and size of
the integration time step, and on the behavior of the multilevel-multigrid solvers is collected,
showing the performance and testing the capabilities of the overall methodology.

Keywords: Adaptive mesh refinement, Implicit-explicit scheme, Large eddy simulation, Multi-
level-multigrid method, Projection method.

1. INTRODUCTION

Adaptivity is an important component to be considered for efficient numerical so-
lutions of partial differential equations. Many techniques appeared through the years and,



nowadays, the term “adaptive mesh refinement” (or simply AMRbraces an entire collec-
tion of approaches which spread to a variety of differentiappon fields [12]. However, the
key idea behind of all those approaches is still the sameonoentrate computational power
where it is most needed by increasing the resolution in spacegions of special interest
in the computational domain. As an example, in Computatibhad Dynamics, one needs
more grid resolution where there are immersed interfaces#is to describe accurately intri-
cate geometry details, where there is high vorticity/tlebae, around boundary layers, and
in the vicinity of other flow features of special interestdamith highly localized span).

In the present work, a combination of an AMR strategy [2,B4with an implicit-
explicit (IMEX [1]) projection method [10,14,17] have beapplied to solve the equations
modeling an incompressible turbulent jet. Section 2 prissére mathematical model which
describes the problem, Section 3 the numerical methodalogge, and Section 4 presents
the numerical results for several performance tests dedignexpose the strengths and weak-
nesses of the approach adopted. Section 5 concludes theitiexemarks on the pros/cons,
pointing to directions to improve even further the efficig€ the overall methodology.

2. MATHEMATICAL MODEL

Mathematically, the fluid dynamics is modeled by the nomdyeNavier-Stokes (NS)
equations for a three-dimensional incompressible flow whoaterial properties may vary,
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with 1 the dynamic viscosity (molecular plus turbulent termsadetl next). In (2),f; repre-
sents the sum of all external forces acting on the fluid. N the summation convention
Is in use. The mathematical model (1)-(2) requires boundadyinitial conditions which will
be detailed in Section 4. From here @n(but not., needed in the turbulence modeling) will
be assumed to be a constant.

The turbulence modeling is given by the large eddy simutelideS) approach, which
explicitly compute the largest structures of the flow (tyblg, structures larger than the finest
computational mesh size), modeling the influence of the lemstales [13]. The state vari-
ables in (1)-(2) are filtered, that is, decomposed into a stimresolved component plus a
residual (or subgrid scale (SGS)) component. The filterathgons can be written in the
standard form, with (2) containing tmesidual-stress tensahat arises from the residual mo-
tions. The closure of the set of equations is obtained by throglthe residual-stress tensor by
Smagorinsky mod¢§l 3], for which the turbulent viscosity is

= (C,A)°S, (4)



whereA = (Az; AzyAxs)s is the filter sizeS is the characteristic filtered rate of strain given
by
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andC is known asSmagorinsky constanits value is chosen betweeérnl to 0.18 [13].

3. NUMERICAL METHODOLOGY

3.1. Discretization in time

Discretization in time is performed by a variable time staparly-implicit time in-
tegration scheme based on a second-order, two-step Geeif®[10,17] which is capable
of handling the non-linear diffusive term arising from theeltulent viscosity. The idea is to
rewrite (2) as .
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numerical experimentation. Based only on Gear’s Methddeahs in the right hand side of
(6) should be treated implicitly. However, herejis extrapolated in time. The resulting time
integration scheme is

where f; =

) + f;, and\ is anad hocconstant chosen through
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whereay = At?/(AtyAty), a; = —Aty/Aty, anday = (Aty + 2At)/Aty, by = —At/ At
andb, = Aty /Aty, with At = "1 — 1" Aty =" — "1, andAt; = Aty + At.
The pressure-velocity coupling present in (7)-(8) is edavith an increment-pressure
projection method [7,10,14], such that one solves in tuengitjuations
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whereu" is a “preliminary” velocity field obtained from the diffusioequation (9), and
q is the pressure incremenbbtained from (10)-(11). Together, they give rise to anpéti
equation forg, being responsible for enforcing the incompressibilitystoaint. Oncey is
determined, updates for the pressure and velocity fieldgiaes byp"+1F = prtbi—1 4 ¢
and byu! """ = w" — (At/ayp) Dg/dx;. Note that the iteration ik is needed to split the

solution into two parts, one for the velocity and one for thesgure increment. The number of



iterations per time step is fixed to two (thatis= 1, 2), which is enough to get a second-order
scheme in time, ang**1 = p™ is the initial approximation taken for the pressure.

To complete the description of the integration in time, advsrneeded on the time-
step stability constraints. From numerical experimeatgth is taken in (6) such that one
succeeds in relaxing the parabolic stability constraidtioed by the viscous dissipation term
(for the jet considered herg,= 2||u||~ has proven to be sufficient). In this context, the only
stability constraint left comes from the explicit discestiion of the advection term,
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3.2. Discretization in space

Discretization of the flow domain follows closely the adaptmesh refinement tech-
nique first proposed by Berger and Colella [2] with grid ad#éiph given by Berger and
Rigoutsos’ Algorithm [4]. Such technique is based on a giidcture given by a set of nested,
Cartesian grid patches which forms a level hierarchy, iguaferred to asomposite grid
Grid patches obey certain rules, targeting for easinedseim tonstruction and efficiency in
their use:

1. afine grid starts and ends at the corner of a cell in the reatser grid, and

2. all fine grid cells at level must be surrounded either levatells or by level — 1 cells
except when it touches the border of the physical domain.

Note that, differently from [2], in the implementa-
tion being used here [10], grid patches disjoint from
each other, that is, given two grid patches belonging to the
same hierarchical level, they do not share interior com-
putational cells. Figure 1 shows an example a three-
dimensional composite grid and Figures 2(a)-2(b) show

It is important to highlight that it is amssential partof
this technique the existence gihost computational cells, .
which form layers around each grid patch (see a simple 2D
example given by Figure 3). Ghost cells furnish bound-
ary conditions from polynomial interpolations of values at ~ Figure 1. 3D-mesh.
neighboring coarse/fine levels. Another important differ-

ence regarding the original work by Berger and Colella [2]

is that, here, there is no time-step refinement: the numesatation of the problem, on all
grid patches, in all levels, evolves with the same time stemfthe finest level. The reason
is that, for incompressible flows, discontinuities have nadispeed of propagation since the
incompressibility constraint couples the solution (thlgbahe pressure field) at every point of
the domain at every instant of time (hence, no subdomain walyein time separately).
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Figure 2. Refinement mesh details.

On the composite grids, variables are placed in a
“marker and cell” (MAC) fashion: scalars at the cell cen-
ters (e.g. specific mass and viscosity), and vectors have . .
their components at cell faces. Standard second-order fi} .
nite difference operators are employed in the discrebmnati . .
of gradient, divergent, and stress tensor differentiatape
tors, including for the nonlinear transport term [10,11]. . .

Composite grids have been employed in several .
contexts [2,3,8,10,14,16,17]. In the present work, a vari- . .
ety of performance tests employing an available computet
implementation of (9)-(12) [10], reveal efficiency stremgjt
and weaknesses for the application considered.
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Figure 3. Ghost cells 2D-mesh.

3.3. Linear multilevel-multigrid method

Once the discretizations in space have been introducedréissure-increment projec-
tion method in use requires the solution of eight lineareayst per time step (four far = 1
and four fork = 2): six of them are of parabolic type (for the velocity compots3, and two
are of elliptic type (for the pressure-increment). To sdahe&se linear systems, anhouse im-
plementationof a multilevel-multigrid method is employed [6,10,14,15lere, “multilevel”
refers to the fact that refinement levels belonging to the gitiucture are also considered to
be multigrid levels. It is important to recall that refinen&vels differ from usual multigrid
levels in that they do not necessarily cover the entire dorobcomputation. The multilevel-
multigrid used was the V-cycle with convergence criteriutd\@?) whereAr = min{Ax;}
is the mesh size, with < i < 3. Details of implementation can be found in [10,11].



4. NUMERICAL RESULTS

The flow domain is given by the Cartesian produgt b;] x [ag, bo] X [as, b3, a par-
allelepiped, wherei; = a; = a3 = 0, by = b3 = 0.288 m, andby = 0.576 m. Initially,
the fluid is at rest with null pressure, and the inflow boundaogtains in its center a main
jet with diameterd, = 7.2 mm which is surrounded by a secondary jet whose diameter is
d, = 18.2 mm. More specifically, the inflow boundary conditions for théogity are given
by w1 in = usin = 0, @andug ;, = ug, + ug,, With
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wherer; = \/(z3 — 0.5 - b3)2 + (x1 — 0.5 - )2, vo = 0.9m/s, v, = 11.4 m/s, and the main
jet velocityvy, = 49.6 m/s, wherer; erq are, respectivelyl; /2 andd, /2.

At the inflow boundary, the turbulence is modeled @91 w us ;,, With w being a
random number irf0, 1] and homogeneous Neumann boundary condition is adoptetidor t
pressure. At the other computational boundaries, one hasf@eneous Neumann boundary
conditions for the velocity and Dirichlet boundary condiits for the pressure increment [5].
The Reynolds number for the simulation being consideregpsaimately2.0 x 10%.

The computation employs a composite grid having a base \eill32 x 64 x 32
computational cells and three refinement levels (four kweltotal). The finest level has
Az, = Azy = Azy = 1.125 x 1072 m. The refinement criterium is based in the maxi-
mum norms of the viscous tensor and of the turbulent visgositnstrained to &5% effi-
ciency (i.e. the ratio between the number of cells in nee@fiement over the total number
of cells that end up being refined to get a grid patch). A dethihe flow on the plane
x9 = 0.432 m and the refined mesh employed can be seen in Figure 4(a) anceH),
respectively. Figure 5(a) shows the component of the visi@abong the flow direction on the
planez; = 0.144 m with a zoom of the refined mesh (Figure 5(b)).
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(a) Velocity in the flow direction. (b) Refined mesh.

Figure 4. Detail of the velocity along the flow direction witk refined mesh in the plane
T9 = 0.432 m.
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(a) Velocity in the direction flow. (b) Zoom of the box in the Figure 5(a).

Figure 5. Velocity along the flow direction with the refinedshen the plane; = 0.144 m.

The velocity decay along the centerline of the computatidamain for turbulent jets

[5,9] is given by

b
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whereu, is the velocity in the flow direction along the centerling, is the velocity of the
main jet, and the parametels andx, are5.8 and4dy, respectively [5]. The expression above
is obtained from velocity measurements in a turbulent jetfyure 6(a) compares the decay
obtained in the present work with the decay given by (14).ufgdg(b) shows the turbulent

D .
spectrum and the decayat slope. In the turbulence model, the Smagorinsky constaat wa
set to beC, = 0.15.
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(a) Velocity decay in the; —centerline. (b) The turbulent energy cascade in the point
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Figure 6. The velocity decay in the centerline and the twhuénergy cascade.



Next, several performance tests aiming to expose streragttisveaknesses of the
methodology adopted, applied to the turbulent jet flow dbedrabove, are reported below.
Tests are performed to evaluate the linear multilevel-iguét method, the AMR and time-
step strategies, and other implementation aspects.

Regarding the multigrid methodology, by timing individyzdrts of the code, it is
observed tha€9.5% of the computational time in each time step is spent in résglthe
pressure correction equation, an ill conditioned elligiimation. Typically, 15 V-cycles are
performed for elliptic equation. Relaxing the multilevaliltigrid convergence criterium to
O(Ax), 12 V-cycles are performed. By the few difference it was dedito maintain the
convergence criteria of @Q\z?), as described in Section 3.3.

Regarding the discretization in space, to fairly compaee AMR approach to the
uniform mesh approach, one must estimate how the perforenam@ uniform mesh would
be, if that uniform mesh had spacing equal to the finest levéhé AMR grid (to achieve
the same accuracy as on the AMR grid). Initially, taking fesegration time steps on both
meshes, in the same machine, revealed that the AMR appraadbec190 times faster and in
the final time steps (when the jet is well developé&djmes faster. The advantage of the AMR
approach over the uniform grid approach is directly coreettd the number of computational
cells used. Note that only a small percentage of processimgg$ spent in managing the AMR
grid (e.g. switching grids, initializing). Typically, leghe2% of that time is spent. Attempts
made to decrease the computational time by relaxing the @ké-$tep constraint (12) (e.g.
by switching from||u; ||« to ||u;||2) led to unstable solution. In few integration time steps the
residue in the multilevel-multigrid decreases slowly f@ag the maximum V-cycles number.
In this case the\t = O(Az%™).

Regarding compilers, the computation time of a single tite@ £mploying both the
gnu (version 4.4.4) andhtel (version 11.0) compilers using the flag “-O3”, on an Inteldzhs
machine (Intel Core 2 Quad processor 2.33GHz and 16Gb RAM)reeasured. The best
performance is achieved by tigau compiler, which has proven to bie2 times faster than
theintel compiler, for the test case considered. Profiling the codegube flag “-pg” and
executinggprof, it is possible to identify the parts of the current implertation which spend
most of the processing time. The results show that the setlwbstines/functions involved
in the computation of ghost cell values is the one called tlstpspending about3% of
the cpu time. One reason is the large number of grid patchededewhen the jet is well
developed (see the Figure 2(b)). To increase efficiencydoyedsing the number of patches
while keeping the jet region well resolved, a grid patch cosgul by a single parallelepiped
along the flow direction (a “tube”) is employed to replace rgédaset of smaller grid patches,
thus decreasing the number of calls needed to set up ghosttets. Table 1 contains the
number of cells used on AMR, on AMR (with a tube), and on umifaoneshes. The column
“Total” counts all kinds of cells employed (that is ghostteinor, on multigrid levels below
base level, and underneath finer levels), the column “Refemerevels” excludes those at
multigrid levels below base level, and the column “Visibéd$o excludes those covered cells,
underneath refinement patches. Employing the tube strategyime spent in a single time
step is1.27 times faster than the original strategy, spending al6att in solving for the
elliptic equation (increment pressure equation).



Table 1. Number of cells on several grid situations.

Mesh Total Refinement levels Visible

AMR 8.69 x 10° 3.44 x 10° 3.01 x 10°

AMR (with atube 7.41 x 10° 3.39 x 106 2.92 x 108
Uniform 41.5 x 108 33.5 x 106 33.5 x 106

5. CONCLUSION

The performance of a numerical methodology based on aniadapésh refinement
technique coupled with a semi-implicit time integratiorneme is assessed by conducting
a series of numerical experiments while solving a turbujenflow. Aspects regarding the
multilevel-multigrid methodology employed, the use of AMRd time step scheme, and other
implementation aspects are explored. One of the strongksst is the capability of achieving
high grid resolution locally, only around regions whichémspecial interest. If those regions
grow in time, the number of grid patches increases and, liegocertain point, that same
capability becomes one of its downsides: the overload ofprder time at coarse-fine grid
interfaces (interpolation at ghost cells). Numericalg multigrid methodology employed re-
quires stop criteria on the order of 8¢?), and typicallyl5 V-cycles are performed for elliptic
equation (pressure increment) ahd-cycles, for parabolic equations (velocity components).
The time spent in the solution of the linear system of the®diequation is bottleneck of
the code. At least that solution should be performed in peralhe linear CFL time step
constraint results, typically\t = O(Ax!%). Bothintel andgnu compilers have been tried
out, with gnu performing better for the current code implementation aorctiie test under
consideration.
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