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Abstract. This work is concerned with assessing the performance of a numerical method,
which combines an adaptive mesh refinement technique, an implicit-explicit time stepping
strategy, and a linear multilevel-multigrid methodology, when applied to a challenging real-
life problem: a three-dimensional turbulent jet flow. Typically, whenever a moving fluid
emerges from a narrow opening into an otherwise quiescent fluid, shear is created between the
entering and the ambient fluids, causing fluid instabilities, turbulence, and mixing at down-
stream. Turbulent jets represent an important class of fluid flow phenomena which occurs
in many instances both in environmental and in industrial applications such as waste water
discharges into rivers, plumes from smokestacks, and flames on combustion nozzles. Math-
ematically, the fluid dynamics is modeled by the non-steady Navier-Stokes equations for a
three-dimensional incompressible flow whose material properties vary. The turbulence mod-
eling is given by the large eddy simulation approach for which a careful selection of the
Smagorinsky constant is performed. To resolve accurately and efficiently sharp gradients,
vorticity shedding, and localized small length scale flow features (e.g. the ones present in
high turbulence regions), dynamic adaptive mesh refinements are employed which form a
level hierarchy composed by a set of nested, Cartesian grid patches (block-structured grid).
That spatial adaptation is used in conjunction with a variable time step, linearly implicit
time integration scheme, based on a semi backward difference formula (SBDF), especially
designed to work with the non-linear diffusive term arising from the turbulent viscosity. The
NS solver is based on an increment-pressure projection method. Information on how often the
mesh adapts itself, on the number of computational cells in use, on the stability and size of
the integration time step, and on the behavior of the multilevel-multigrid solvers is collected,
showing the performance and testing the capabilities of the overall methodology.

Keywords: Adaptive mesh refinement, Implicit-explicit scheme, Large eddy simulation, Multi-
level-multigrid method, Projection method.

1. INTRODUCTION

Adaptivity is an important component to be considered for efficient numerical so-
lutions of partial differential equations. Many techniques appeared through the years and,
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nowadays, the term “adaptive mesh refinement” (or simply AMR) embraces an entire collec-
tion of approaches which spread to a variety of different application fields [12]. However, the
key idea behind of all those approaches is still the same: to concentrate computational power
where it is most needed by increasing the resolution in spaceon regions of special interest
in the computational domain. As an example, in Computational Fluid Dynamics, one needs
more grid resolution where there are immersed interfaces/bodies to describe accurately intri-
cate geometry details, where there is high vorticity/turbulence, around boundary layers, and
in the vicinity of other flow features of special interest (and with highly localized span).

In the present work, a combination of an AMR strategy [2,3,4,16] with an implicit-
explicit (IMEX [1]) projection method [10,14,17] have beenapplied to solve the equations
modeling an incompressible turbulent jet. Section 2 presents the mathematical model which
describes the problem, Section 3 the numerical methodologyin use, and Section 4 presents
the numerical results for several performance tests designed to expose the strengths and weak-
nesses of the approach adopted. Section 5 concludes the textwith remarks on the pros/cons,
pointing to directions to improve even further the efficiency of the overall methodology.

2. MATHEMATICAL MODEL

Mathematically, the fluid dynamics is modeled by the non-steady Navier-Stokes (NS)
equations for a three-dimensional incompressible flow whose material properties may vary,
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whereρ is the specific mass, the vector(u1, u2, u3) is the fluid velocity,p is the pressure,τij
is the viscous tensor,
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with µ the dynamic viscosity (molecular plus turbulent terms, detailed next). In (2),fi repre-
sents the sum of all external forces acting on the fluid. Note that the summation convention
is in use. The mathematical model (1)-(2) requires boundaryand initial conditions which will
be detailed in Section 4. From here on,ρ (but notµ, needed in the turbulence modeling) will
be assumed to be a constant.

The turbulence modeling is given by the large eddy simulation (LES) approach, which
explicitly compute the largest structures of the flow (typically, structures larger than the finest
computational mesh size), modeling the influence of the smaller scales [13]. The state vari-
ables in (1)-(2) are filtered, that is, decomposed into a sum of a resolved component plus a
residual (or subgrid scale (SGS)) component. The filtered equations can be written in the
standard form, with (2) containing theresidual-stress tensorthat arises from the residual mo-
tions. The closure of the set of equations is obtained by modeling the residual-stress tensor by
Smagorinsky model[13], for which the turbulent viscosity is

µt = (Cs∆)2S, (4)
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andCs is known asSmagorinsky constant. Its value is chosen between0.1 to 0.18 [13].

3. NUMERICAL METHODOLOGY

3.1. Discretization in time

Discretization in time is performed by a variable time step,linearly-implicit time in-
tegration scheme based on a second-order, two-step Gear’s Method [10,17] which is capable
of handling the non-linear diffusive term arising from the turbulent viscosity. The idea is to
rewrite (2) as
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numerical experimentation. Based only on Gear’s Method, all terms in the right hand side of
(6) should be treated implicitly. However, here,f̃i is extrapolated in time. The resulting time
integration scheme is
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wherea0 = ∆t2/(∆t0∆t1), a1 = −∆t1/∆t0, anda2 = (∆t0 + 2∆t)/∆t1, b0 = −∆t/∆t0
andb1 = ∆t1/∆t0, with ∆t = tn+1 − tn, ∆t0 = tn − tn−1, and∆t1 = ∆t0 +∆t.

The pressure-velocity coupling present in (7)-(8) is treated with an increment-pressure
projection method [7,10,14], such that one solves in turn the equations
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whereu⋆,k
i is a “preliminary” velocity field obtained from the diffusion equation (9), and

q is thepressure incrementobtained from (10)-(11). Together, they give rise to an elliptic
equation forq, being responsible for enforcing the incompressibility constraint. Onceq is
determined, updates for the pressure and velocity fields aregiven bypn+1,k = pn+1,k−1 + q,
and byun+1,k

i = u⋆,k
i − (∆t/a2ρ) ∂q/∂xi. Note that the iteration ink is needed to split the

solution into two parts, one for the velocity and one for the pressure increment. The number of



iterations per time step is fixed to two (that is,k = 1, 2), which is enough to get a second-order
scheme in time, andpn+1,0 = pn is the initial approximation taken for the pressure.

To complete the description of the integration in time, a word is needed on the time-
step stability constraints. From numerical experimentation, λ is taken in (6) such that one
succeeds in relaxing the parabolic stability constraint induced by the viscous dissipation term
(for the jet considered here,λ = 2||µ||

∞
has proven to be sufficient). In this context, the only

stability constraint left comes from the explicit discretization of the advection term,
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3.2. Discretization in space

Discretization of the flow domain follows closely the adaptive mesh refinement tech-
nique first proposed by Berger and Colella [2] with grid adaptation given by Berger and
Rigoutsos’ Algorithm [4]. Such technique is based on a grid structure given by a set of nested,
Cartesian grid patches which forms a level hierarchy, usually referred to ascomposite grid.
Grid patches obey certain rules, targeting for easiness in their construction and efficiency in
their use:

1. a fine grid starts and ends at the corner of a cell in the next coarser grid, and

2. all fine grid cells at levell must be surrounded either levell cells or by levell − 1 cells
except when it touches the border of the physical domain.

Figure 1. 3D-mesh.

Note that, differently from [2], in the implementa-
tion being used here [10], grid patches aredisjoint from
each other, that is, given two grid patches belonging to the
same hierarchical level, they do not share interior com-
putational cells. Figure 1 shows an example a three-
dimensional composite grid and Figures 2(a)-2(b) show
the grid patches that compose this three-dimensional mesh.
It is important to highlight that it is anessential partof
this technique the existence ofghost computational cells,
which form layers around each grid patch (see a simple 2D
example given by Figure 3). Ghost cells furnish bound-
ary conditions from polynomial interpolations of values at
neighboring coarse/fine levels. Another important differ-
ence regarding the original work by Berger and Colella [2]
is that, here, there is no time-step refinement: the numerical solution of the problem, on all
grid patches, in all levels, evolves with the same time step from the finest level. The reason
is that, for incompressible flows, discontinuities have no finite speed of propagation since the
incompressibility constraint couples the solution (through the pressure field) at every point of
the domain at every instant of time (hence, no subdomain may evolve in time separately).



(a) Levels. (b) Patches.

Figure 2. Refinement mesh details.

Figure 3. Ghost cells 2D-mesh.

On the composite grids, variables are placed in a
“marker and cell” (MAC) fashion: scalars at the cell cen-
ters (e.g. specific mass and viscosity), and vectors have
their components at cell faces. Standard second-order fi-
nite difference operators are employed in the discretization
of gradient, divergent, and stress tensor differential opera-
tors, including for the nonlinear transport term [10,11].

Composite grids have been employed in several
contexts [2,3,8,10,14,16,17]. In the present work, a vari-
ety of performance tests employing an available computer
implementation of (9)-(12) [10], reveal efficiency strengths
and weaknesses for the application considered.

3.3. Linear multilevel-multigrid method

Once the discretizations in space have been introduced, thepressure-increment projec-
tion method in use requires the solution of eight linear systems per time step (four fork = 1

and four fork = 2): six of them are of parabolic type (for the velocity components), and two
are of elliptic type (for the pressure-increment). To solvethese linear systems, anin house im-
plementationof a multilevel-multigrid method is employed [6,10,14,15]. Here, “multilevel”
refers to the fact that refinement levels belonging to the grid structure are also considered to
be multigrid levels. It is important to recall that refinement levels differ from usual multigrid
levels in that they do not necessarily cover the entire domain of computation. The multilevel-
multigrid used was the V-cycle with convergence criterium O(∆x2) where∆x = min{∆xi}

is the mesh size, with1 ≤ i ≤ 3. Details of implementation can be found in [10,11].



4. NUMERICAL RESULTS

The flow domain is given by the Cartesian product[a1, b1] × [a2, b2] × [a3, b3], a par-
allelepiped, wherea1 = a2 = a3 = 0, b1 = b3 = 0.288 m, andb2 = 0.576 m. Initially,
the fluid is at rest with null pressure, and the inflow boundarycontains in its center a main
jet with diameterd0 = 7.2 mm which is surrounded by a secondary jet whose diameter is
d1 = 18.2 mm. More specifically, the inflow boundary conditions for the velocity are given
by u1,in = u3,in = 0, andu2,in = ud0 + ud1 , with
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whererj =
√

(x3 − 0.5 · b3)2 + (x1 − 0.5 · b1)2, v0 = 0.9m/s, v1 = 11.4m/s, and the main
jet velocityv2 = 49.6m/s, wherer1 e r0 are, respectively,d1/2 andd0/2.

At the inflow boundary, the turbulence is modeled by0.01ω u2,in, with ω being a
random number in[0, 1] and homogeneous Neumann boundary condition is adopted for the
pressure. At the other computational boundaries, one has homogeneous Neumann boundary
conditions for the velocity and Dirichlet boundary conditions for the pressure increment [5].
The Reynolds number for the simulation being considered is approximately2.0× 104.

The computation employs a composite grid having a base levelwith 32 × 64 × 32

computational cells and three refinement levels (four levels in total). The finest level has
∆x1 = ∆x2 = ∆x3 = 1.125 × 10−3 m. The refinement criterium is based in the maxi-
mum norms of the viscous tensor and of the turbulent viscosity, constrained to a85% effi-
ciency (i.e. the ratio between the number of cells in need of refinement over the total number
of cells that end up being refined to get a grid patch). A detailof the flow on the plane
x2 = 0.432 m and the refined mesh employed can be seen in Figure 4(a) and Figure 4(b),
respectively. Figure 5(a) shows the component of the velocity along the flow direction on the
planex1 = 0.144m with a zoom of the refined mesh (Figure 5(b)).

(a) Velocity in the flow direction. (b) Refined mesh.

Figure 4. Detail of the velocity along the flow direction withits refined mesh in the plane
x2 = 0.432m.



(a) Velocity in the direction flow. (b) Zoom of the box in the Figure 5(a).

Figure 5. Velocity along the flow direction with the refined mesh on the planex1 = 0.144m.

The velocity decay along the centerline of the computational domain for turbulent jets
[5,9] is given by

uc
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=
Bud0

x2 − x0

, (14)

whereuc is the velocity in the flow direction along the centerline,ud0 is the velocity of the
main jet, and the parametersBu andx0 are5.8 and4d0, respectively [5]. The expression above
is obtained from velocity measurements in a turbulent jet [9]. Figure 6(a) compares the decay
obtained in the present work with the decay given by (14). Figure 6(b) shows the turbulent
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(a) Velocity decay in thex2−centerline.
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(b) The turbulent energy cascade in the point
(0.144m, 0.324m, 0.144m).

Figure 6. The velocity decay in the centerline and the turbulent energy cascade.



Next, several performance tests aiming to expose strengthsand weaknesses of the
methodology adopted, applied to the turbulent jet flow described above, are reported below.
Tests are performed to evaluate the linear multilevel-multigrid method, the AMR and time-
step strategies, and other implementation aspects.

Regarding the multigrid methodology, by timing individualparts of the code, it is
observed that69.5% of the computational time in each time step is spent in resolving the
pressure correction equation, an ill conditioned ellipticequation. Typically, 15 V-cycles are
performed for elliptic equation. Relaxing the multilevel-multigrid convergence criterium to
O(∆x), 12 V-cycles are performed. By the few difference it was decided to maintain the
convergence criteria of O(∆x2), as described in Section 3.3.

Regarding the discretization in space, to fairly compare the AMR approach to the
uniform mesh approach, one must estimate how the performance on a uniform mesh would
be, if that uniform mesh had spacing equal to the finest level in the AMR grid (to achieve
the same accuracy as on the AMR grid). Initially, taking few integration time steps on both
meshes, in the same machine, revealed that the AMR approach can be 190 times faster and in
the final time steps (when the jet is well developed),5 times faster. The advantage of the AMR
approach over the uniform grid approach is directly connected to the number of computational
cells used. Note that only a small percentage of processing time is spent in managing the AMR
grid (e.g. switching grids, initializing). Typically, less the2% of that time is spent. Attempts
made to decrease the computational time by relaxing the CFL time-step constraint (12) (e.g.
by switching from‖ui‖∞ to ‖ui‖2) led to unstable solution. In few integration time steps the
residue in the multilevel-multigrid decreases slowly reaching the maximum V-cycles number.
In this case the∆t = O(∆x0.73).

Regarding compilers, the computation time of a single time step employing both the
gnu (version 4.4.4) andintel (version 11.0) compilers using the flag “-O3”, on an Intel based
machine (Intel Core 2 Quad processor 2.33GHz and 16Gb RAM) are measured. The best
performance is achieved by thegnu compiler, which has proven to be1.2 times faster than
the intel compiler, for the test case considered. Profiling the code using the flag “-pg” and
executinggprof, it is possible to identify the parts of the current implementation which spend
most of the processing time. The results show that the set of subroutines/functions involved
in the computation of ghost cell values is the one called the most, spending about43% of
the cpu time. One reason is the large number of grid patches needed when the jet is well
developed (see the Figure 2(b)). To increase efficiency, by decreasing the number of patches
while keeping the jet region well resolved, a grid patch composed by a single parallelepiped
along the flow direction (a “tube”) is employed to replace a large set of smaller grid patches,
thus decreasing the number of calls needed to set up ghost cell values. Table 1 contains the
number of cells used on AMR, on AMR (with a tube), and on uniform meshes. The column
“Total” counts all kinds of cells employed (that is ghost, interior, on multigrid levels below
base level, and underneath finer levels), the column “Refinement levels” excludes those at
multigrid levels below base level, and the column “Visible”also excludes those covered cells,
underneath refinement patches. Employing the tube strategy, the time spent in a single time
step is1.27 times faster than the original strategy, spending about63% in solving for the
elliptic equation (increment pressure equation).



Table 1. Number of cells on several grid situations.
Mesh Total Refinement levels Visible
AMR 8.69× 106 3.44× 106 3.01× 106

AMR (with a tube) 7.41× 106 3.39× 106 2.92× 106

Uniform 41.5× 106 33.5× 106 33.5× 106

5. CONCLUSION

The performance of a numerical methodology based on an adaptive mesh refinement
technique coupled with a semi-implicit time integration scheme is assessed by conducting
a series of numerical experiments while solving a turbulentjet flow. Aspects regarding the
multilevel-multigrid methodology employed, the use of AMRand time step scheme, and other
implementation aspects are explored. One of the strongest sides is the capability of achieving
high grid resolution locally, only around regions which bares special interest. If those regions
grow in time, the number of grid patches increases and, beyond a certain point, that same
capability becomes one of its downsides: the overload of computer time at coarse-fine grid
interfaces (interpolation at ghost cells). Numerically, the multigrid methodology employed re-
quires stop criteria on the order of O(∆x2), and typically15 V-cycles are performed for elliptic
equation (pressure increment) and4 V-cycles, for parabolic equations (velocity components).
The time spent in the solution of the linear system of the elliptic equation is bottleneck of
the code. At least that solution should be performed in parallel. The linear CFL time step
constraint results, typically,∆t = O(∆x1.65). Both intel andgnu compilers have been tried
out, with gnu performing better for the current code implementation and for the test under
consideration.
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