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Abstract. This paper is devoted to procedures for the finite element modeling of composite 
beams. The numerical analysis is developed using the Timoshenko Theory of the Beams, 
which is implemented element containing two nodes and two degrees of freedom per node. 
The paper is organized as follows: introductory comments are presented regarding the use of 
composite materials in engineering applications. Numerical simulations present the results of 
the static and dynamic behavior of the composite beams. Composite structures, finite element 
modeling, timoshenko beams. 
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1. INTRODUCTION 

Composite materials have been increasingly used in various types of engineering 
systems, especially in aerospace structures, in which structural components must be designed 
to withstand harsh static and dynamic loading conditions, with typically high reliability 
levels[1,2]. In applications in which dynamic loads are involved, the interest in achieving as 
vibration amplitudes are directly related to fatigue and, as a result, to structural integrity. The 
great variety of materials properties and structural configurations makes the numerical 
modeling of the mechanical behavior of composite structures a complex task. This is a reason 
for which in the last decades, a great deal of effort has been devoted to the development of 
finite element models for characterizing the mechanical behavior of such materials, 
accounting for its typical variations of constructions and various orientations possibilities. 
Much of the knowledge available to date is compiled in the works by Reddy (1997).  

2. FINITE ELEMENT FORMULATION OF COMPOSITE BEAMS 

The mechanical behavior of the composite structure beam can be model by using the 
TimoshenkoTheory, in which the displacements at an arbitrary point in such a composite is 
expressed as follows: 

xyu   
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Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



where u  e denote the displacements in directions x and  y. respectively. And w x is the cross-

section rotation y direction. 
 
 The Timoshenko beam formulation accounts for transverse shear deformation. It is 
therefore capable of modeling thin and thick beams [3].  The figure shows the Timoshenko 
beam element with two nodes. 
 
 

 
Figure 1. Beam element. 

 
 
 The Equation (1) can be rewritten: 
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In Equation (2): 
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 The usual strain–displacement relations are used and the resulting strains are separated 
in bending and transverse shear strains, b  and s , respectively, as follows: 

 
 

   1, , ,b x y z t   bD v D v                                                                                                      (3) 

 

     2, , ,s x y z t y  sD v D v                                                                                               (4) 

 

Where: . And the matrices 0

T

xv w     iD are formed by differential operators appearing in 

the strain–displacement relations. 
 

 
 



 The relation between strain and displacement was obtained the follows expressions: 
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Discretization of the displacement variables is made by using appropriate interpolation 

functions. Hence, for the two node  element, the 2 mechanical variables included in vector v 
are interpolated from their corresponding 4 nodal values through the following relation: 
 

    ,v t v t  N                                                                                                        (7) 

 
 where:  
 

 N  of dimensions 2 x 2, is the matrix formed by the beam element shape interpolation 

functions formulated in local coordinates   , 11  ξ . 

 
By associating Equations. (1), (2), (3), (4) and (7), the displacement and strain fields are 
found to be expressed in terms of the nodal values as follows: 
 

     , , ,V x y z t z v t A N  

v
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   b b bv   D N B                                                                                    (9.a) 

 
   s s sv v   D N B                                                                                        (9.b) 

 
 Based on the stress-strain relations, the strain and kinetic energies of the composite 
beams can be formulated in terms of the natural variables of strain field and the mechanical 
material properties. After, Lagrange’s equations are used, considering the nodal 
displacements and rotations as generalized coordinates, to obtain the  following elementary 
mass and stiffnesses matrices, respectively: 
 

           
1 1

1 1

( ) ( )e T TA d I d      
 

   N N J N N J                                      (10) 

          
1

1 1

n
e kT

b b b k b
k

d  
 

  B C (EI)B J    (11)                                               

          
1

1 1

n
e kT

s s s k s
k

d  
 

  B C (GA)B J                                                                       (12) 

 
where I, G, E, A are, respectively, inertia moment, shear modulus, elastic modulus and area. 
 

 
 



In Equations. (10-12) indicates the determinant of the Jacobian of the transformation 

from the in-plane physical variables 

 Jdet

 yx, to the natural variables   , and matrices  b C  

and  s C  represent, respectively, the orthotropic bending and shear elastic matrices, which 

are constructed according to the Classical Laminate Theory (CLT) as follows: 
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where bC  and sC  are, respectively, the bending and shear elastic property matrices, referred 

to its principal orthotropic axis, and  b T  and  s T are the associated rotation matrices 
[2,5].  
From the elementary matrices computed for each element of the finite element mesh, the 
global equations of motion are constructed, accounting for the node connectivity, using 
standard finite element assembling procedures [4]. After assembling, the global equations of 

otion in the time domain can be written as follows: 
 

                                                                                                              (14) 

where  and  are the global FE mass and stiffness matrices. Symbol 

m
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e 1 e 1

  indicates matrix assembling and 
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 tq is the vector of global d.o.f’s. is the vector of 

generalized external loads.  

3. NUMERICAL RESULTS 

3.1. Analysis of frequence response functions (FRF’s) 

nd it was considered that the fibers of the composite beam are oriented at an angle of the 30º. 

 
Table1. Geometric characteristics and properties of the beam 
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The Figures 2 and 3 shows the FRF amplitudes of the composite material obtained 
through the implementation. Note that the theory used satisfactorily describes the FRF 
amplitudes. The thickness of the beam is a design parameter influence on the analysis of 
eams which can be seen through the FRF of Figure 3, which has changed the value of the 

thickness to 0.01. 
 

b

 

Figure 2. FRF amplitudes for h =0.1m. 
 

 
Figure 3. FRF amplitudes for h =0.01 m. 

 

ed also that the thickness of the 
eam so significant influence on the structural behavior. For future work is suggested 

lastic core to attenuate the vibration. 
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4. CONCLUSIONS 

 The modeling procedure examined and developed in this work allowed to obtain the 
frequency response functions satisfactorily. It can be conclud
b
incorporating a viscoe
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