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Abstract. Magneto-rheological, or MR, dampers are one of the most promising semi-active 

control devices for protecting civil engineering structures, vehicles, ships, or aircraft from the 

damaging effects of dynamic loading. They have many advantages over alternative technologies, 

such as low power requirement, reliability, and low cost. A wide range of control schemes have 

been considered for MR dampers, with no general consensus on the most appropriate approach. 

Research at the University of Sheffield has focused on feedback linearization, but this requires 

measurement of the damping force which increases the complexity of the system. This study aims 

to overcome this problem and improve the vibration absorbability of the system by investigating 

the application of observer based optimal control to the force-feedback linearization of an MR 

damper. The proposed force-feedback linearization chose the set point force as proportional to 

the piston velocity. But in this study, in order improve the performance of the system, the desired 

set point force is chosen to be the optimal control force. The implementation of the optimal 

control theory requires the measurement of the system states (displacement and velocity of the 

mass), are provided by the observer as well. Due to passivity limitation of the MR damper the set 

point force is diverted to the zero at the active region to satisfy the passivity theory of Karnopp.  

The results of this study is compared to observer based force-feedback linearization algorithm 

and it is concluded that the proposed control system is able to reduce the displacement 

transmissibility of the damped system better then the compared one. 
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1. INTRODUCTION 

Scientists have been studying the vibration theory since the first quarter of the twentieth 

century [5-17]. Some of the earliest research was done by Timoshenko [17] and Den Hartog [5] 

who described the primary solutions to vibration problem of the engineering structures. These 

solutions were achieved by applying passive devices to an engineering system such as a structure, 

turbine, vehicle, or bridges. The passive suspension system has three elements which are isolated 

masses, the linear spring elements and the passive viscous damper that does not require any 

power sources [4]. Depending on the relative velocity of the damper, it dissipates energy which is 

not controllable as the suspension properties remain fixed. This makes the performance of the 

passive systems highly dependent on the excitation bandwidth. For the large excitation 
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bandwidth the performance will decrease. Due to this passive systems are optimal for specific 

conditions [12]. 

This major downside of the passive devices was soon recognized as a problem [5]. In 

order to overcome this limitation scientists developed the active and semi-active systems, which 

are able to change their absorbing behaviour according to measured data [5].  

In the 1950’s and 60’s, active suspension systems started to get considerable attention in 

order to avoid this limitations of the passive systems for vibration control [3]. Energy dissipation 

and storage from and to the vibrating system is achieved by a hydraulic actuator. Here, electro-

hydraulic servo-valves control the flow rate of high-pressure fluid that is pumped into and out of 

the actuator. As a result, better performance can be achieved over wide ranging excitation 

conditions by using appropriate sensors and control logic. 

In the present day one of the most promising suspension systems is the semi-active 

system which deals with smart fluids. The flow resistance of these fluids changes very quickly 

and continuously by applying an electric or magnetic field [3].  

The performance of semi-active systems almost reaches that of active systems while 

keeping the weight, cost and complexity of the system similar to passive systems [7, 12]. Semi-

active systems provide a means to control energy storage and/or dissipation. But such systems 

cannot increase the energy of the system like active systems, so the power requirement of these 

systems is very low. 

Magneto-rheological, or MR, dampers are one of the most promising semi-active control 

devices for protecting civil engineering structures, vehicles, ships, or aircraft from the damaging 

effects of dynamic loading. They have many advantages over alternative technologies, such as 

low power requirement, reliability, and low cost. A wide range of control schemes have been 

considered for MR dampers, with no general consensus on the most appropriate approach. 

Research at the University of Sheffield has focused on feedback linearization [9], but this 

requires measurement of the damping force which increases the complexity of the system. 

The present study aims to overcome this problem by investigating the application of 

observer based control to the optimal feedback linearization of an MR damper. A single-degree-

of freedom structure is chosen as the basis for study, as shown schematically in Figure 1. With 

reference to Figure 1, the aim is to perform optimal force-feedback linearization of the MR 

damper (so that it can perform as an arbitrary semi-active force generator) using an observation 

of the feedback force, rather than a measured value. The present report considers a simplified 

modelling approach to this problem, although corresponding experiments are planned for the near 

future. 



 

 
Figure 1: Mass-spring-damper system. 

 

2. MODELLING OF SDOF SYSTEM 

 
 Figure 1 represents the single degree of freedom (SDOF) mass isolator system, where the 

   represents the mass of structure,    represents the spring stiffness and MR damper represents 

the controllable damper. This system has two states which may be conveniently chosen as, 

absolute displacement of the structural mass   , and the absolute velocity of the structural 

mass    . Between the structural mass and the base the controllable MR damper exerts a 

force    . The controllable damper accepts a control signal current   which is used to generate 

the damper force    . 

 Using these two states, the system of Figure 1 can be written in state space form as  

                                                                                                                       (1)                     

                                                                                                                      (2) 

Here the measured output   is the structural acceleration      . The disturbance is the ground 

excitation,      and the state vector   is defined as 
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The matrices             and   are then given by: 
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In order to model the nonlinear behaviour of the MR damper, the lumped-parameter model 

shown schematically in Figure 2 was used [8].  

 

 

 

Figure 2: (a) The lumped-parameter model of MR damper. (b) Schematic representation of quasi-

steady damper function  . 

 

Figure 2 shows the lumped-parameter model and the force/velocity characteristic of the 

MR damper. Here, the stiffness element    represents the compressibility of the MR fluid, whilst 



 

the mass     represents its inertia. The nonlinear damper represents the Bingham plastic nature 

of the MR fluid flow. In the absence of an applied current the force/velocity characteristics is a 

straight line through the origin, indicating Newtonian behaviour as seen in Figure 2(b). As the 

magnetic field increased up to a maximum current so the yield force produced by the damper is 

seen to increase. In Figure 2(a) the valve flow which is quasi-steady is described by the non-

linear function    and is a function of the quasi steady velocity of     and the control signal   to 

the smart damper: 

                                 
                    

                              
                                      (5) 

Where     ,       and    are the modal parameters referred to the Sims et al. work [8]. The force 

produced by the controllable MR damper is: 

                                                                                                                                       (6) 

Here the    represents the absolute displacement of the fluid inertia and    represents the relative 

displacement of the piston. 
 

 

3. OBSERVER DESIGN 

The aim of the observer is to estimate the states, piston velocity and damper force of the 

SDOF mass isolator problem for the implementation of the optimal force feedback linearization. 

There could be other ways to measure the damper force, piston velocity and the system states 

such as using a load cell (force measurement), and LVDT sensors (displacement measurement). 

However, the implementation of the load cell and LVDT sensors are difficult and expensive 

compared to the accelerometer. Also the reason for not using the acceleration signal directly is 

that firstly it drifts when integrating the signal and the second is the observer concept could be 

extended more complex systems to estimate the states.  

Assume that there are two accelerometers, which are placed on the basement and mass to 

measure the accelerations of the basement and the mass. The question that arises here is whether 

an observer is able to estimate the velocity and displacement data of the base and the mass or not. 

In order to answer this question firstly, the state space representation of the SDOF system is 

derived as in Equations (9-13) then followed by deciding the observer gain, designing Simulink 

model of the observer, and lastly comparing the observed data with the actual. 

If the estimated values of data are acceptable then the target is to estimate the force 

produced by the MR damper     , which is installed between the basement and mass to absorb 

the vibration by different values of applied current. If the force acting on the MR damper can be 



 

estimated, then the control algorithm could be developed to control the current applied to the MR 

damper according to optimal force feedback linearization. 

With reference to Figure 1, the observed damper force was obtained using observations of 

the base       and response motions      , along with knowledge of the spring stiffness and 

payload mass: 

                                                                                                                            (7) 

This requires estimates of the payload mass acceleration and displacement, as well as the base 

motion. These were obtained by designing a Luenberger observer [2], using    as system inputs, 

    as available output measurements, and     and     as the states to be identified. The observer 

error dynamics were placed at         and        , such that the observer dynamics were 

considerably faster than the dynamics of the SDOF system                   .  

The full state observer has the form, 

                                                                     (8) 

                                                                                                                        (9)                                    

                                                                                                                                           (10) 

The dynamics of the state estimation error are then given by 

                                                                                                                                   (11) 

Where L is the observer gain, and 

                                                                                                                                     (12) 

If the eigen-values of        have negative real parts then        as    . Hence, 

           as    . 

 In this study, estimated values of the states are shown to be quite a good match with the 

actual data after doing several numerical tests.  

4. OPTIMAL FORCE FEEDBACK LINEARIZATION 

The non-linear behaviour of smart fluid dampers makes the objective of achieving a 

desired force very difficult. Researchers at The University of Sheffield [10] have developed one 

solution to this problem using feedback linearization, which is briefly summarized below.  

The control strategy is shown in block diagram form in Figure 3. Here, feedback control 

is being used to implement a semi-active force generator. The proposed control system uses 

measurement of the damper force to linearise the nonlinear damping behaviour. Essentially, the 

controller gains B and G can be tuned so that the actual force closely matches the set point force. 



 

In Figure 3, this set-point force is chosen to be proportional to piston velocity by the control gain 

D, so that the MR damper behaves as a linear viscous device. The values of B and G were 

previously determined through extensive simulation testing on the MR damper, which led to the 

feedback controller gain B=0.6 N/N and the feed forward-gain G=0.0015 A/N. 

 
Figure 3: Force-feedback Linearization Control. 

 

In this study, in order improve the performance of the system, the desired set point force 

is chosen to be the optimal control force. The implementation of the optimal control theory 

requires the measurement of the system states which are the absolute displacement and velocity 

of the mass, which are provided by the observer as well.  

The approach proposed here is to append a force-feedback loop to induce the MR damper 

to produce approximately a desired control force   . A linear optimal controller K is then 

designed that provides the desired control force    based on the measured states. 

                                                      
   
    

                                                               (13)       

This optimal control force is not possible to be achieved by the MR damper in active 

region where the energy is injected to the system by the force generator. Due to this passivity 

limitation of the MR damper, the set point force is set to zero at the active region, by checking the 

product of the estimated damper force and the estimated piston velocity. This has to be positive 

to satisfy the passivity theory of Karnopp [4]: 

                                                    
  

   
    

                   

          

                                             (14) 

 The optimal gain K is obtained by the LQR strategies because of their successful 

application in other engineering structural control applications [1, 13-14, 16]. The matrix K is the 

full state feedback gain for deterministic regulator problem given by [14]; 

                                                                       (15) 



 

Here P is the solution of the algebraic Ricatti equation given by 

                                                                     (16) 

Here Q and R weighting matrices minimize the performance index; 

                
 

 
                                                   (17) 

After several numerical investigation the best values of the weighting matrices are found 

as,    
  
  

 , and               . 

A block diagram of this semi-active control system is shown in Figure 4. Whole system 

has four parts as seen in Figure 4: plant, observer, optimal controller, and force-feedback 

linearization. 

 
Figure 4: Block Diagram of the Semi-Active Control System. Plant is shown in Figure 1. 

 

5. NUMERICAL EXAMPLES 

The performance of the optimal force-feedback control algorithm presented in this paper 

is now evaluated through the numerical simulation. As seen in Figure 1 SDOF mass isolator 

system is chosen with structural mass         , and spring stiffness            also the 

parameters of the MR damper are             , and        .  

In simulation, the model of the structure is subjected to the sinusoidal base excitation with 

0.02m amplitude and frequency range of 0.1-6Hz. In Figure 5 four different displacement 

transmissibilities of the SDOF system are shown. The square line (□) represents the frequency 

response of the SDOF system which has a passive damper element with the damping ratio of 
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       instead of the controllable MR damper. The solid line (▬) represents the response of 

the proposed observer based optimal control and dotted line (···) shows the response of the 

optimal control theory with actual states instead of the estimated. Lastly, the circle line (○) 

indicates the frequency response of the Sky-Hook control. 

 

Figure 5: Displacement Transmissibilities of the SDOF system for different control algorithms. 

 

In order to investigate the effect of the weighting matrices, simulations of the proposed 

control algorithm are run for different R and Q values. Figure 6 shows the change of the R values 

while keeping the Q matrices identity. Figure 7 represents the two different performance of the 

proposed system for two different Q matrices while R is equal to            .  
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Figure 6: Effect of the different R parameters on the performance of the observer based system, 

with identity Q matrix. 

 

 

Figure 7: Effect of the different Q parameters on the performance of the observer based system, 

with              . 

0 1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Frequency (Hz)

D
is

p
la

c
e

m
e

n
t 
T

ra
n

s
m

is
s
ib

il
it
y

 

 

R=1.0000e-007

R=5.6234e-008
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6. DISCUSSION AND CONCULUSIONS 

The frequency response comparison shown in Figure 5 indicates that the observer is able 

to estimate the states perfectly: the frequency responses of the observer based optimal force-

feedback control (▬) and the optimal force-feedback control based on actual states (···) are 

matching very well. The proposed optimal control algorithm is almost able to push the amplitude 

of the displacement transmissibility of the system below unit for all frequencies. At the lower 

frequencies performance of the proposed control is similar to passive control (□) and force-

feedback control (▲) but for the higher frequencies the performance approaches that of ideal 

Sky-Hook control (○).  

A key issue with the observer-based system is the choice of numerical values for the 

weighting parameters Q and R. The positive definite R matrix accounts for the expenditure of 

energy of the control signal, and the positive-semidefinite Q determines the relative importance 

of the states on control force [6]*. As seen in Figure 6, reducing the value of R increases the 

control force and, the proposed algorithm approaches the ideal sky-hook scenario. In Figure 7, for 

the circle line (○) Q is chosen as [0 0; 0 1]. The second state (velocity) controls the system. For 

the line (+), Q is chosen identity matrix so both of the states (displacement and velocity) control 

the system together, and for the solid line Q is chosen as [1 0; 0 2]. The velocity has the major 

effect on the control system. Further work should investigate the implication of these design 

parameters on practical applications. 

  In conclusion the observer based optimal force-feedback control algorithm is a 

promising control strategy for smart fluid dampers. Future work will compare the performance of 

the proposed control system with the clipped optimal control algorithm developed by Dyke`s 

et.al. [15]. Furthermore will investigate experimental implementation of proposed control 

algorithm. 
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