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Abstract. Problems involving the dynamics of heating or cooling of physical systems 

submitted to certain boundary conditions are of great importance in a wide range of 

situations. Since simple situations involving cooling of food where the temperature of 

each part of the system needs to be controlled and, in general, does not involve the 

presence of heat sources, even more complex situations like nuclear reactors, where 

there is a heat source which is dependent on position and the dependence of the reactor 

reactivity on the temperature requires a good knowledge of the dynamics of this 

quantity, both for safety and efficiency. Problems of the steady-state heat diffusion 

equation for a series of physical systems are easy to solve and can be found in a vast 

literature on the subject. To find the time evolution of temperature T (x, t) of a system 

submitted to a heat source, however, is not a simple task and this type of problem is 

usually treated in an approximate way.    In this work, for one-dimensional and 

homogeneous system, equilibrium T(x) and transient T (x, t) solutions are presented for 

cases of the existence of sources permeating throughout the medium. Each system 

considered is supposed to have constant temperature in the edges. Calculations are 

presented for two cases: one is the case of a source non-dependent on position and time 

and the other is the case of a source with sinusoidal spatial dependence, a situation 

close to what would occur in a one-dimensional nuclear reactor. The extension to a 

three-dimensional case, homogeneous sphere with constant temperature on its surface 

will also be presented. The case involving the contact of two subsystems of different 

materials will also be analyzed. 
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1. Introduction

    Problems involving the dynamics of heating or cooling for physical systems 

submitted to certain boundary conditions are of great importance in a wide range of 

situations. Since simple situations involving cooling of food where the temperature of 

each part of the system needs to be controlled and, in general, does not involve the 

presence of heat sources, even more complex situations like nuclear reactors, where 

there is a heat source which is dependent on position and the dependence of the reactor 

reactivity on temperature requires a good knowledge of the dynamics of this quantity, 

both for safety and efficiency [1]. 

    Problems of the steady-state heat diffusion equation for a series of physical systems 

are easy to solve and can be found in a vast literature on the subject. To find the time 

evolution of temperature T (x, t) of a system, submitted to a heat source, however, is not 

a simple task and this type of problem is usually treated in an approximate way [2], for 

example, using the Newton's law of cooling. The difficulty in dealing with such 

problems lies in the fact that, in general, transient solutions for diffusion equation are 

written as an infinite sum of eigenfunctions of the system, which, with appropriate 

coefficients, fall into stationary solutions when t tends to infinity. Such series, however, 

in many situations do not present at t equal zero, the well-defined derivative, which 
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creates problems in terms of what happens, for example, with the heat flow within the 

system, which is proportional to the temperature gradient. 

    Once the appropriate series written in terms of a complete set of eigenfunctions of the 

system is found, which is compatible with the boundary and initial conditions of the 

problem, one can always construct the temperature derivative of a function by using the 

very definition of the derivative of a function and   computational help; however, part of 

the analyticity of the solution is lost. 

    The problem of finding series whose derivative is not well defined is common in 

developments of Fourier series and there are strategies to overcome this condition [3]. 

This study demonstrates, with the aid of computations, the problem of the lack of a 

well-defined derivative at t equal zero, which does not necessarily exist for times 

different from zero, which makes the expressions that determine the temporal evolution 

of the system completely analytics, at least in the cases considered here. Thus, to 

analyze the results, computations are only required to make the sums of functions, a 

practice often indispensable when it comes to this type of solution. 

    In this work, for one-dimensional and homogeneous system, equilibrium T(x) and 

transient T (x, t) solutions are presented for cases of the existence of sources permeating 

throughout the medium. Each system considered is supposed to have constant 

temperature in the edges. Calculations are presented for two cases: one is the case of a 

source non-dependent on position and time and the other is the case of a source with 

sinusoidal spatial dependence, a situation close to what would occur in a one-

dimensional nuclear reactor. The existence or not of a well-defined derivative for the 

series obtained will be discussed whenever necessary. The extension to a three-

dimensional case, homogeneous sphere with constant temperature on its surface will 

also be presented. The case involving the contact of two subsystems of different 

materials will also be analyzed. 

2 - Heat diffusion equation 

 The heat diffusion equation for a homogeneous system with conductivity k, heat 

capacity per unit of volume c and density ρ is given by 

                                                                (1) 

where a is the diffusion constant with a²=(k/c) and q is the rate at which heat is created 

or absorbed per volume unit in the system. The heat flow is given by 

                                                                     (2) 

            2.1 - Linear heat flow 

    For a homogeneous system with unitary cross section exchanging heat with the 

environment only at its edges in positions x=0 and x=L, which we assume to have a 

constant temperature T₀, the heat diffusion is written as 

                                                          (3)                                                                          

For , similar situation to that found in linear nuclear reactors in 

steady state diffusion regime. The steady state solution  is easily obtained and 

results in                                         

 (4) 

    The t dependent solution  is written as  where 

the transient term is the solution to the diffusion equation without sources and, as usual 

 is taken as a sum of eigenfunctions of the system 

 



 (5) 

    where , and coefficients  depends on the initial contitions. 

    For  

 (6) 

and coefficients  results in 

 

 

(7) 

and 

 (8) 

The heat flow per area unit is given by 

 (9) 

    The most interesting situation is to suppose the environment to have  

and the temperature distribution of the system without sources to be  

with , a cooling process. For this case  and  is given by 

 (10) 

    Requiring  

 

 

(11) 

after some simple calculations coefficients  are given by  

and  and  results in 

 

(12) 

The temperature distributions for  and  for several t values are 

presented in Figure 1, in this figure, the system parameters, in MKS units, are L=10, 

k=10, , . Note that the series for  do not have derivative for , 

despite this, for  the series 

 

 (13) 

converge and the derivative of  obtained from the derivative definition of a 

function and some computational help coincides to the analytical expression (13). These 

curves are presented in figures 2 and 3 for two t values. Observe that for small t values 

more terms of the series (13) need to be taken into account to have a good agreement 

with the numerical calculations. 
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Figure 1. Temperature  calculated by using expression (12) for  
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Figure 2. Derivatives of  calculated by using 50 terms of expression (13), black line, and 

numerical calculations, red line, for  and t=100s. 
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Figure 3. Derivatives of  calculated by using numerical calculations, blue line, and 

expression (13) with 50 terms, black line, 500 terms, red line, for . 

 
  

    



       2.2 The heating of a sphere. 

    Consider a homogeneous sphere of radius R, conductivity k, heat capacity per unit of 

volume c and density ρ, which we assume that the surface is kept at constant 

temperature . If the source shows spherically symmetry,  and 

, the heat diffusion equation (1) in spherical coordinates reduces to 

 

 
(14) 

For the case =constant, the steady state solution is given by 

 
(15) 

The maximum temperature occurs at  and results in  

 (16) 

where  is the total heat produced in the sphere per time unit. 

The heat flux  results in 

 

 

(17) 

in complete agreement with the relation 

 

 
 

(18) 

The solution  for a source acting on the system after  and with initial 

condition , is given by 

 

 
 

 

(19) 

Where  is written as 

 
(20) 

where .   Requiring  

 

 
(21) 

and  

 (22) 

Coefficient   can be calculated by using the ortogonality of eigenfuctions of the 

system and results in 

 

(23) 

To verify that 

 
(24) 

is an interesting exercise of mathematical physics and we show that on appendices A. 



 

 

For the case which q presents a sinusoidal dependence on position 

 

 

(25) 

 the steady state solution is given by 

 
(26) 

 

The maximum temperature of the system results in 

 
(27) 

where  is the total heat produced in the sphere per time unit. 

 

 

(28) 

The solution  is written as 

 
 

(29) 

where 

 
(30) 

 

For a given initial condition    only the coefficient  is different 

from zero and  is given by 

 

(31) 

3. Analysis 

 

    Several interesting things may be emphasized by examining preceding 

calculations. First, it should be noted that empirical impositions, like the Newton’s 

law of cooling, to solve the equations to cool down the process were not used at all. 

The solutions only depended on the initial and boundary conditions. Second, the 

problem of inexistence of a well-defined derivative to series like equation (12), for 

, as one can see in expression (13), does not exist for . The third question 

is that the mathematical solution , for equation (3), is given, in general, for 

expression (5) with any value of length , and , the choice of a 

particular , the length of the system, is due to the necessity to keep the 

boundary condition . Different  values do not respect this boundary 

condition. The similar apparent ambiguity occurs for the solution  in the three 

dimensional case. For the cases analyzed above, this is not really a problem since 

we must take  due to the boundary conditions. However, for heterogeneous 



systems like two coupled systems with different physical parameters and lengths  

and , and the heat source restricted to act only on one of these materials, If one 

tries to write the solution   as the sum of solutions to the differential equation 

(3) for each region,  it is necessary to keep    a continuous function in the 

interface between the two materials, so that this ambiguity cannot be solved without 

some additional consideration.        

 

Appendices 

Verifying the equality 

 
(A1) 

Writing the left term as 

 
(A2) 

and using 

 
(A3) 

  

denoting  we can write (A2) as  

 
(A4) 

Using [4] 

 
(A3) 

 

after some simple calculations we obtain 

 (A3) 

and finally 

 

 

(A4) 

References 

[1] G. Kessler, “Steady state and transient profiles in a multishell spherical system 

heated internally by reactor-grade plutonium”. Nuclear Engineering and design 239, 

2430-2443, 2009. 

[2] Ibrahim Dincer, “Simplified solution for temperature distributions of spherical and 

cylindrical products during rapid air cooling”. Energy Convers. Mgmt Vol. 36, N0 12, 

pp 1175-1184, 1995.   

[3]P.M. Morse, H. Feschbach, Methods of theoretical physics, McGraw-Hill, New 

York, 1953. 

[4] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, series, and products. 

Academic Press, New York, 1980. 

 


