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Abstract. Since the publication of Cosserat brothers’ work, microcontinuum field theories

have been making decisive progresses, concerning the fundamentals and the development of

mathematical models, in several engineering and biomechanics topics. These theories, un-

like the classical field ones, made possible to analyze many different properties of non-simple

bodies. Thus, they attracted the researchers’ attention, especially of those studying the trans-

port of electrolytes in charged hydrated biological tissues. Nevertheless, some fundamental

aspects of the electromechanical and chemical interactions are usually neglected. In fact, the

study of ion-solvent and ion-ion interactions in electrolyte solutions is still an important re-

search topic, because these interactions affect the drift of ions and the electric and chemical

properties of solutions. Thus, in this work we developed a model for diluted electrolyte solu-

tions using continuum thermodynamics. For reaching this aim, the continuum mixtures theory

concepts were employed. Moreover, we supposed that the electrolyte solutions are material

bodies with inner rigid structures (micropolar medium) which can interact with mechanical,

quasi-static electromagnetic and chemical fields. Global balance laws for mass, linear and

angular momenta, energy, and entropy, were settled and localized to obtain the local laws.

From these balance laws, we distinguished the chemical behavior of two kinds of electrolytes,

and emphasized the polar character of the solution, which is related to physical-chemical in-

teractions between the ion and solvent molecules. In addition, we showed that translational

and rotational movements contribute differently to the energy flux vector. While numerical

results are not presented, the theoretical results obtained exhibit central importance for the

discussion and prediction of physical-chemical phenomena in more complex materials, such

as blood, biological tissues, polymeric suspensions, and slurries.
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1. INTRODUCTION

While most of the continuum mechanics treatises consider that the Cauchy’s stress tensor
is symmetric, it has long been known that anti-symmetric stress tensors may occur in con-
tinuum mechanics. The first to realize that some materials do not obey the constitutive law
proposed by Cauchy, in which all torques are moments of forces, were the Cosserat brothers,
in the beginning of the last century. They observed that many phenomena seem incompatible
with classical continuum mechanics, which is based on the fundamental assumption that all
balance laws are valid for every part of the body, and the state of the body at any material
point is influenced by the neighborhood around that point exclusively. These assumptions
make clear that classical continuum mechanics do not encompass the long-range effects of
loads on the motion and evolution of the body.

Then, in order to include long-range effects on continuous bodies, Cosserat brothers pro-
posed to describe these effects as functions of the direction, so that the body may be visualized
as sets of points having vectors attached to them (directors). They considered these vectors as
rigid triads, that is, material points were considered as geometrical points that posses proper-
ties similar to those of rigid particles (micropolar medium). But this approach soon revealed
limited, due to the difficulties encountered to treat the material symmetry in constitutive equa-
tions [8]. In the second half of last century, more consistent polar theories were developed.
Among these theories, there are Eringen’s works [2, 3], where memory and diffusive effects,
as well as electromagnetic interactions, were incorporated to the theory. Since then, polar
continuum theories have been employed to study the thermomechanical behavior of blood,
polymeric suspensions, crystal liquids, granular media etc. and, more recently, the properties
of electrolyte solutions.

In this work, we propose a continuum model to study the thermomechanical behavior of
electrolyte solutions. For this aim, we deduce the balance equations of the solution and its
constituents, and we emphasize the resemblances and differences between this model and that
for apolar continua. The proposed balance equations of mass and linear momentum have
the same form for both polar and apolar continua. But the differences appear when the bal-
ance equations of angular momentum and energy are laid down. These differences come
from phenomenological considerations on the physical model, related to additional quantities
which are specific for polar continua.These quantities must be taken into account because the
system behavior, as a whole, may not be described by macroscopic movements exclusively.
Indeed, small velocity changes in volume elements, even though they are not macroscopically
detectable, they do influence the system evolution. Thus, not only macroscopic movements
should be analyzed, but also the movements that describe the internal evolution of the volume
element. Hence, in order to validate the localization postulate, some additional kinematic
variables must be introduced. Then, without recurring to a totally non-local theory, it is pos-
sible to evaluate the non-linear effects of electromagnetic fields generated at distant points,



and movements of such points, on the point x. Thus, the presented results apply to any polar
mixture under the influence of electromagnetic fields.

2. CONTINUUM MODEL PROPOSED

The electrolyte solution will be considered to be a continuum mixture of polar constituents
which may carry electric charges and/or electric dipole moments. The mixture as a whole is
electrically neutral, but polarizable. Electromagnetic quantities will be considered under the
quasi-electrostatic approximation because to study the electromechanical behavior of a mix-
ture, both the balance equations of the classical theory of mixtures and the Maxwell equations
are demanded.

In fact, it is well known that the Maxwell equations are invariant under Lorentz transfor-
mations, whereas the balance equations of continuum mechanics are invariant under Galilean
transformations. But for the coherence of the continuum model proposed, it is required that
the Maxwell equations invariant under the same kind of transformation for which the balance
equations of classical mixture theory are invariant. This may be reached if just non relativistic
velocities are considered and the system acoustic frequencies are lower than 104 Hz. Conse-
quently, being known the sources of the electric and magnetic fields at a certain moment, at
this time these fields are determined without concern for what the sources were any instant
earlier [6].

All the results presented follow the formalism applied by Hutter and Johnk [4] and Trues-
dell [7], and all equations are written in their component forms by considering a Cartesian
coordinate system. The direct notation is used throughout this paper. In particular, vectors
in the Euclidean 3D-space are denoted by bold symbols and letters, while tensors are de-
noted by italic capital letters. The gradient and divergence with respect to spatial coordinates
are indicated by ∇ and div, respectively. A quantity corresponding to a particular material
in the mixture is identified by placing a labeling index a directly above the symbol for the
quantity. Summations over the constituent indexes are always indicated by a summation sign,∑

, and the metric tensor and permutation symbols are respectively denoted by eijk and εijk.
This procedure is necessary in order to avoid confusion, since the usual notation employed in
continuum mixture theories is frequently cumbersome.

In addition, all macroscopic fields are interpreted as averages of microscopic fields gen-
erated by the constituents, located on point x at time t. Thus, for example, Ea is the total
electric field that acts over the species a at coordinates (x, t), by considering the action of
an externally applied electric field and electric fields generated from the interaction of a with
itself and other mixture constituents.



2.1. Mass balance

Since we suppose a reactive continuum mixture, a mass production term, ca, must be
introduced in the mass balance equation. Then, we have the equation

∂ρa

∂t
+ div (ẋaρa) = ca, (1)

where ρa is the mass density of constituent a, ẋa is the velocity of a, and the mass production

ca is given by ca =
n∑

j=1

(
cja − caj

)
, where caj is the mass conversion velocity from constituent

a to constituent j by volume unit, as a result of chemical reactions. If the constituent a is
converted into constituent j at some point, but the constituent j is not converted into constituent
a at the same point, then caj > 0 and cja = 0. Inversely, one has caj = 0 and cja > 0. Since
chemical reactions can progress in both directions, caj and cja may be simultaneously positive
at the same point. Because positive values for both caj and cja correspond to the direct and
reverse velocities, ca may be positive, negative or null.

The introduction of terms related to the rate of mass conversion from a constituent into
another is extremely important to associate the nature of the electrolyte to ion-ion interac-
tions which, in turn, determine the properties of the electrolyte solution. How much these
interactions affect the properties of the solution and how dense is the ionic distribution in the
solution are equivalent questions. But the ionic distribution density depends on the nature of
the electrolyte, that is, depends on whether it is a potential electrolyte or a real one.

Electrolytes that, through chemical reactions with solvent molecules, dissociate into ions
are potential electrolytes. Most potential electrolyte solutions have only a small concentration
of ions, so the effects of ion-ion interactions are frequently neglected. The behavior of these
solutions is governed predominantly by the equilibrium position of the reaction between the
potential electrolyte and the solvent molecules. Then, caj and cja are different for a same
point of the mixture until the kinetic equilibrium is reached. In contrast, real electrolytes are
those that originate ions in solution through physical interactions between the ions present in
the ionic solid and the solvent molecules. In general, a real electrolyte is completely ionized
when the solid is dissolved in water, so that the resulting solution consists only of solvated
ions and solvent. For these solutions, the dependence of their properties on the concentration
is determined by the interaction force between the ions.

The classification into real electrolyte and potential one is a modern classification that
aims to describe the electrolyte behavior by its structure and not by its behavior in a particular
solvent. However, the classification was historically made based on the electrolyte behavior
in a specific solvent, usually water. Weak electrolytes were those that produce solutions with
small electric conductivity when the electrolyte is dissolved, whereas strong electrolytes were
those that originate solutions with high conductivity after dissolving the electrolyte. The
disadvantage of this last classification is that, as soon as a solvent other than water is chosen,



the electrolyte denominated a strong one in water can behave as a weak electrolyte in a non-
aqueous solvent and vice-versa [1].

At each point, the mass balance equation for the mixture as a whole is obtained by con-
sidering null the sum of the mass production terms on all constituents that take part in the

chemical reactions, that is,
n∑

a=1

ca = 0. This expression imposes that the chemical reaction

per se do not change the density at each point in the mixture. Thus, we have

∂ρ

∂t
+ div (ẋρ) = 0, (2)

where the definition of mixture density was employed.

2.2. Linear and angular momenta balances

In the bulk of electrolyte solutions, where the gradient of the electric field is small, the
ionic movement is the responsible for the conductive properties exhibited by the solution.
This phenomenon, governed by the Ohm’s law, implies the existence of some force whose
character is not exclusively electrostatic. Indeed, ions in electrolyte solutions experiment
mechanical and chemical forces, beyond the electrostatic forces that may be due to ion-ion and
ion-dipole interactions. While coulombic forces are responsible for the ionic interactions, the
polarization Kelvin’s force is the result of the action of the electric field created by ions present
in solution and/or an external source on the water molecules dipoles. Thus, the equation of
linear momentum balance is

∂ρaga

∂t
+ div (ρaga ⊗ ẋa − T a) = ρaba + qaEa +Pa · (∇Ea) +ma, (3)

where ρaga is the total linear momentum, by considering both mechanical and electromag-
netic contributions, T a is the stress tensor, by considering both mechanical and electromag-
netic contributions again, ba is the mechanical body force, qa is the charge density, Ea and Pa

are respectively the electric and polarization fields, and ma is the linear momentum produc-
tion. From Equation 3, the balance equation of linear momentum for the mixture is obtained
by imposing that the sum of production terms on all constituents is null, according to the
general postulate of continuum mixtures theory [7]. Then, it follows that

∂ρg

∂t
+ div (ρg ⊗ ẋ− T ) = ρb+ qE+P · (∇E) , (4)

where ρg =
n∑

a=1

ρaga, ρb =
n∑

a=1

ρaba, qE =
n∑

a=1

qaEa, [P · (∇E)] =
n∑

a=1

[Pa · (∇Ea)],

T =
n∑

a=1

T a −
n∑

a=1

ρaga ⊗ ua and the definition of diffusion velocity, u = ẋa − ẋ, was em-

ployed.



We have assumed that the constituents of the electrolyte solution are polar continua. Then,
at every point of the mixture, and by considering every point as a punctual system, the total
angular momentum of each constituent about an origin, o, is given by the sum of two parts:
the angular momentum of the punctual system about the position of its center of mass (spin),
ρasa, and the angular momentum of the punctual system center of mass about that origin,
o× ρaga. Analogously, the supply of angular momentum is given by the sum of the coupling
of electromagnetic fields, Pa×Ea, and the angular momentum, in relation to the origin, of the
forces that act on the punctual system center of mass, o×{ρaba + qaEa + [Pa · (∇Ea)]}. In
turn, the flux of angular momentum is given by the coupling stresses, Ca, and o×T a . Lastly,
the angular momentum production is composed by the spin production, τa, and the angular
momentum production on the punctual system center of mass, o×ma. Once these quantities
are defined, the balance equation of angular momentum is

∂ (o× ρaga + ρasa)

∂t
+ div [(o× ρaga + ρasa)⊗ ẋa − o× T a−C a ] =

Pa × Ea + o× {ρaba + qaEa + [Pa · (∇Ea)]}+ o×ma + τ a. (5)

Just like any tensor of second order, the stress tensor may be split up into a symmetric and
a skew-symmetric part, that is, T a

ij = T a
(ij) + T a

[ij], where the brackets indicate anti-symmetry
and the parenthesis, symmetry. By using the identity div (o× T a) = o× div (T a) + tsks

a ,

where tsksa stands for the axial vector associated to T a
[ij], and the expression that converts local

derivative into material derivative, Equation 5 becomes

ρa
dsa

dt
− div (Ca) + tsks

a
= Pa × Ea + τ a. (6)

Equation 6 is known as the spin balance equation. This equation shows that the stress tensor
associate to the stress vector of constituent a is only symmetric if sa is constant in time, the
tensorial field Ca is solenoidal, τ a = 0, Pa is aligned to Ea. Moreover, Equation 6 allows
to infer that the couplings due to electric fields play an important role in electrolyte solutions.
For this purpose, impose that sa is temporally constant, Ca is a solenoidal field and τ a = 0.
Thus, from Equation 6 follows that

tsks
a
= −Pa × Ea. (7)

However, P× E = eijkP
iEjck = eijkP

jEkci because eijk = ejki, being eijk = εijk when

the basis (ci)
3
i=1 is orthonormal. Further, as tsks = εijkTjkc

i for an orthonormal basis, one

concludes that Tjk = −P[jEk]. Thus, when an electric field is imposed on an electrolyte
solution, either by an external source or simply due to the presence of dissociated ions in
solution, the equilibrium polarization of the solvent dipoles is affected. In fact, the solvent
dipoles are rotated by a torque which aligns them to the electric field. The relaxation of this



process to a new equilibrium position dissipates energy, generating a bigger friction on the
ions than would occur if the solvent was a non-polarized viscous continuum. Thus, the ion
mobility and solution conductivity are changed as a result of relaxation and electrophoretic
effects, caused respectively by ion-ion interactions and viscous drag on the ion by the solvent.

The equation of angular momentum for the mixture as a whole is obtained by summing all
the terms of Equation 5 on all constituents and employing the definition of diffusion velocity,
u = ẋa − ẋ. Then, we have

∂ (o× ρg + ρs)

∂t
+ div [(o× ρg + ρs)⊗ ẋ− o× T−C ] =

P× E+ o× ρb+ o× {qE+ [P · (∇E)]} , (8)

because o×
n∑

a=1

ma +
n∑

a=1

τ a = 0. As well as the stress tensor T a, the tensor T is not sym-

metric too, except if s is a constant, C is a solenoidal field, and P and E are aligned. This
indicates that the mixture does not behave as an apolar continuum body.

2.3. Energy balance

In the energy balance equation, the physical quantity to be balanced is the total energy den-
sity, composed by the kinetic, internal, and electromagnetic energy densities. Similarly, the
flux, supply and production of energy are given by the thermodynamical and electromagnetic
contributions. Thus,

∂ (ρaεa + 1/2ρaẋa + 1/2ρasa · ωa + 1/2Ea2)

∂t
=

−div
[(
ρaεa + 1/2ρa ẋa + 1/2ρasa · ωa + 1/2Ea2

)
⊗ ẋa

]
+ (9)

+div [Sa + T a (ẋa) + C a (ωa)− ha ] + ωa · (Pa × Ea) +

+Ea · ∂P
a

∂t
+ Ea · ia + ρara + γa + ẋa · {ρaba + qaEa + [Pa · (∇Ea)]} ,

where ρaεa is the density of internal energy, ωa is the angular diffusion velocity, ha is the
energy flux vector, Sa is the Poyinting vector, ωa is the angular velocity, ρara is the energy
supply due to mechanical forces, ia is the migration current and γa is the energy production.
By using the expression for material derivative and Equations 2 and 3, the Equation 9 may be
simplified to

d (ρaεa)

dt
+ div [ha − Sa ] =

T aT · ∇ (ẋa) + C aT · ∇ (ωa) + ωa · T sksa + Ea · ∂P
a

∂t
+ Ea · ia + ρara + γa, (10)

where T aT and CaT denote respectively the transpose of T a and C a . Equation 10 requires
that, if the particles of the mixture are subject to deformations, this must not significantly



change the angular velocity of the constituent, i.e., the mixture shows micropolarity.
Equation 10 is known as the balance equation of internal energy of the constituent. This

equation differs from the balance equation of internal energy for apolar continuum bodies due

to the presence of two terms, namely C aT · ∇ (ωa) and ωa · T sksa . The first term, known

as the energy from coupling stresses, is analogous to T aT · ∇ (ẋa) and represents the work
per unit of time due to the stresses acting on a constituent. In turn, the second term is due
to internal stresses resulting from interactions between the constituents, external agents or
deformations of the mixture.

The balance equation of energy for the mixture as a whole is obtained by summing all the
terms of Equation 9 on all constituents, and imposing that the total energy power generation
is zero. Then, we have

∂ (ρε+ 1/2ρẋ+ 1/2ρs · ω + 1/2E2)

∂t
=

−div
[(
ρε+ 1/2ρẋ+ 1/2ρs · ω + 1/2E2

)
⊗ ẋ

]
+div [S+ T (ẋ) + C (ω)− h] +

ω · (P× E) + E · ∂P
∂t

+ E · i+ ρr + ẋ · {ρb+ qE+ [P · (∇E)]} , (11)

where h =
n∑

a=1

[
ha − Sa − T a (ua)− Ca (ωa) +

(
1
2
ρaua2 + 1

2
Ea2 + 1

2
ρa$a2 + 1

2
ρaεa

)
ua
]

is

the energy flux vector,$ is the translational diffusion velocity, and ρε =
n∑

a=1

(%aεa+ 1
2
ρaẋa2+

1
2
ρa$a2 + 1

2
Ea2), such as the total kinetic energy was split up into translational and rotational

kinetic energies. Therefore, the expression for the energy flow vector of the mixture indicates
that: (i) h can not be interpreted only as a heat flux vector, since it is composed by the heat
flux vector, the power voltage and the coupling stresses of the diffusive motion and, also, the
flow of convective energy associated to the diffusion and (ii) the translational and rotational
movements contribute differently to the flow of energy in the mixture.

2.4. Entropy balance

There is an additive quantity named entropy for each constituent, so that the balance equa-
tion

∂

∂t
ρaηa + div (ρaηa ẋa + φa) = ρaσa + ρaπa (12)

is valid, where ρaσa is the entropy supply, φa is the entropy flux, and πa is the entropy pro-
duction. In turn, for the mixture as a whole

∂

∂t
ρη + div (ρηẋ+ φ) = ρσ + ρπ, (13)



where
n∑

a=1

ρaηa = ρη,
n∑

a=1

ρaσa = ρσ,
n∑

a=1

ρaπa = ρπ, and
n∑

a=1

(φa + ρaηaua) = φ, such as

ηa and φa are objective constitutive quantities, as well as their respective sums. In this work,
we have followed the dissipation axiom, proposed by Truesdell [7], which states that the
entropy production for each constituent of the mixture need not be non-negative, even though

the entropy production for the mixture must be ρπ =
n∑

a=1

ρaπa ≥ 0.

3. CONCLUSION

In this work, a thermodynamic model for dilute electrolyte solutions is proposed by con-
sidering the theory of mixtures in continuous media and electrodynamics. The polar and non-
local nature of the mixture is highlighted, as well as the nonlinear composition of mechanical
and electromagnetic theories. Moreover, balance equations of mass, linear and angular mo-
menta, and energy and entropy, for the mixture as a whole and its constituents are presented.
In the balance of angular momentum equation, terms are introduced for the spin in the supply,
flow and production of angular momentum.

It is also shown that the stress tensor is not symmetrical, due to the polar nature of the con-
stituents and mixture, and the influence of the electromagnetic fields and spin. By considering
the energy balance equation for the mixture, it is clear that the vector h should not be inter-
preted as the heat flux vector of classical mechanics. Thus, the well known Clausius-Duhem
inequality does not apply to polar mixtures and other entropy principles, for example, the
Muller-Liu’s principle [5], should be used to impose restrictions on the constitutive responses
of the system.
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