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Abstract

Optimization methods are frequently applied to solve real-world problems such, engineering design,
computer science, and computational chemistry. This paper aims to compare gradient-based algo-
rithms and the meta-heuristic particle swarm optimization to minimize the multidimensional bench-
mark Griewank function, a multimodal function with widespread local minima. Several approaches of
gradient-based methods such as steepest descent, conjugate gradient with Fletcher-Reeves and Polak-
Ribiere formulations, and quasi-Newton Davidon-Fletcher-Powell approach were compared. The re-
sults presented showed that the meta-heuristic method is recommended for function with this behavior
because is no needed prior information of the search space. The performance comparison includes
computation time and convergence of global and local optimum.

1 Introduction

Nowadays, many optimization problems emerge
from engineering, physical sciences, and the com-
putation field. Applications of unconstrained op-
timization algorithms are present in the areas of
digital signal processing, automatic control of pro-
cesses, mechanical systems, robotics, and ma-
chine learning.[1]. Therefore, is desirable to have
computational effortless and efficient algorithms
to minimize or maximize multivariable functions.
In this article, we made a comparative study be-
tween gradient-based optimization methods and
heuristic particle swarm optimization (PSO) to
solve a benchmark Griewank function represented
in Equation 1.
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with xi ∈ [−600,600], for i = 1, · · · ,n where
the global minima is f (x) = 0 located at xi =
[0, · · · ,0], but the Griewank function has many
widespread local minima, exponentially increas-
ing with n which are regularly distributed. The
highly increase of the local minima, suggest that
the global minimum becomes extremely difficult
to detect using deterministic methods. [2]

The complexity for 1D and 2D is shown in the
zoomed-in Figure 1. The multimodal and unique
global minima turn the Griewank function a typi-
cal test optimization function for stochastic algo-
rithms, such as simulated annealing, differential
evolution, and particle swarm optimization. [3]
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Figure 1: 1D and 2D Griewank function for x1 ∈
[−600,600] and a zoom at interval [−100,100].
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2 Gradient based algorithms
The unconstrained gradient-based algorithms are
iterative methods that extensively use the gradient
information of the objective function as a search
direction in the design space during the iterative
procedure. [4, 5]

2.1 Steepest descent method

The steepest descent method is one of the old-
est and most known methods used to mini-
mize functions that have several variables. This
method, considered the simplest of the gradient
type methods, was created in 1847 by Cauchy
and is called a deterministic method, where the
results converge to the same point if have the
initial guess.[1] The algorithm is shown below,

Algorithm 1: Steepest descent method

Initial guess x0 at k = 0;
while ||∇ f (xk)|| > tol do

Find the search direction dk =−∇ f (xk);
Solve for αk by minimizing f (xk +αdk);
Update the results xk+1 = xk +αkdk;
k← k+1

end

2.2 Conjugate gradient method

The conjugate gradient method was originally in-
troduced by Hestenes and Stiefel [6] for the so-
lution of a linear system of equations Cx = −b
where C is symmetric and positive definite, which
is equivalent to minimize a quadratic function.
However, if the function to be minimized, F(x),
is not quadratic, the nonlinear conjugate gradient
method is applied to update iteratively the solu-
tion vector x, until the convergence is reached as
shown in Algorithm 2. [7]

Algorithm 2: Nonlinear conjugate gra-
dient method

Task: Minimize F(x).
Initialize:

Start with an initial guess x0 and compute
the gradient g0 = ∇F(x0).
Set the initial search direction d0 =−g0

for j = 0,1,2, · · ·kmax do
Compute the step length α j by minimizing

F(x j +αd j)
Set new solution vector x j+1 = x j +α jd j
Compute new gradient g j+1 = ∇F(x j+1)
Compute search direction

d j+1 =−g j+1 +βd j
end

The first steps of nonlinear conjugate gradient
method are similar to steepest descent method. How-
ever, the search direction is updated by assuming the or-
thogonality between next and previous gradient present
in β proposed originally by Fletcher and Reeves [8] like
in Equation 2,

β
FR =

gT
j+1g j+1

gT
j g j

(2)

The Polak-Ribiere conjugate gradient [9] method use

β
PR =

(g j+1−g j)
T g j+1

gT
j g j

(3)

According to Exl et al.[7] the nonlinear conjugate gra-
dient method that use (3) instead of (2) are believed to
have more efficient convergence characteristics due the
self-correcting behavior of term (g j+1−g j).

2.3 Quasi-Newton methods
The quasi-Newton method is an iterative procedure for
solving an unconstrained minimization. The method
is based on building up curvature information during
the iterations. It approximates the curvature of the ob-
jective function approximating the Hessian matrix in-
formation. This makes the iterations of quasi-Newton
computationally more expensive, compared to the non-
linear conjugate gradient. However, stored information
in the approximated Hessian might decrease the total
number of iterations compared to the conjugate gradi-
ent method. [10]

Algorithm 3: Davidon-Fletcher-Powell
quasi-Newton method

Task: Minimize F(x).
Initialize:

Start with an initial guess x0 and compute
the gradient g0 = ∇F(x0).
Set the initial search direction d0 =−g0
Hessian matrix H0 = I

for j = 0,1,2, · · ·kmax do
Compute the search direction d j =−H jg j
Compute the step length α j by minimizing

F(x j +αd j)
Set new solution vector x j+1 = x j +α jd j
Calculate p j = α jd j, and g j+1
Calculate q j = g j+1−g j
Update H j+1 like Equation 4

end

In the quasi-Newton method, two approaches for
calculating the Hessian matrix are mainly discussed,
the Broyden, Fletcher, Goldfarb and Shanno method
(BFGS) and Davidon, Fletcher and Powell method
(DFP). For this work, the DFP method was imple-
mented, as in Equation 4

H j+1 = H j−
p jpT

j

pT
j q j

+
H jq jqT

j H j

q jH jqT
j

(4)
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3 Particle swarm optimization
As an alternative to gradient-based methods, heuristic
approaches were developed to mitigate the need for gra-
dient information required in previous methods related
above. The particle swarm optimization was proposed
by Eberhart as a stochastic optimization technique in-
spired by social(swarm) and individual(particle) behav-
ior of movement of bird and fish migration for food
sources.

3.1 PSO Algorithm
In the PSO algorithm, the individuals of the population
are represented as particles that have position and ve-
locity in the search space Rn, where n is the dimension
of space. The evolution process of the method is based
on the update of the velocity of particles during the it-
eration process, modifying their positions. Consider a
particle i in a epoch k is represented by xi

k an the the ve-
locity is vk

i . The position and velocity of each particle
are allocated in vectors with n dimensions. The update
of each particle position during the iterations are based
on two information, the best position of particle pk

i and
the best global position gk, having this information, the
velocity of each particle can be updated as Eq. below,

vk+1
i = ωvk

i + c1rnd1(pk
i − xk

i )+ c2rnd2(gk− xk
i ) (5)

where vk+1
i is the update of velocity, ω is the inertia

factor, for standard convention this values is maintained
between 0.4 and 0.9, rnd1 and rnd2 are independent ran-
dom variables with uniform distribution between 0 and
1. The values of the constants c1 and c2, known as
the cognition and social acceleration coefficient, respec-
tively, were found to have superior performance when is
2. [11]

xk+1
i = xk

i + vk+1
i (6)

4 Numerical experiments
All the numerical algorithms are implemented in
Python language, using an Intel® Core TM i5-4210U
CPU @ 1.70GHz, 4 cores, 6 GB RAM. We analyze
the sensibility of steepest descent, nonlinear conjugate
gradients, with the formulation of Fletcher-Reeves and
Polak-Ribiere for computing conjugate directions, and
the quasi-Newton with Davidon-Fletcher-Powell (DFP)
formulations to approximate the Hessian matrix.

The results of the evaluation of the Griewank func-
tion at each iteration are shown in Figure 2. Is possible
to note that the first step of all methods is equal, they are
differentiated after the second iteration, where the con-
jugate gradient and DFP have an additional procedure
in the algorithm. The gradient-based methods were de-
veloped to search local minima, thus have a sensibil-
ity to initial guess and characteristics of the objective

function. Also in the Figure 2 are the updated coor-
dinates for each iteration on the surface of the objec-
tive function and visualize the accelerated convergence
of the quasi-Newton methods and conjugated gradients.
It is possible to evaluate by the Table 2 that the quasi-
Newton method presents a faster convergence than the
other methods, mainly because it is a more sophisti-
cated method. Among the formulations of the conju-
gate gradient method, we can notice that it is a sen-
sitive method to the initial estimate. Of all the tests
performed, the Polak-Ribiere formulation proved to be
more stable, because it presents a corrective term in the
calculation of the search conjugate direction. Already,
using the Fletcher-Reeves equation, due to variations in
the Griewank function it tends to diverge from the near-
est local minimum.

In all deterministic methods, the value of the objec-
tive function declines abruptly, and before iteration 5
they have all reached similar values, however, the DFP
method reaches the tolerance criterion, with fewer iter-
ations. The stop criteria are defined in terms of the gra-
dient norm. A common procedure between the methods
is the search for the step size αk in the search direction,
this is a sensitive part of the process, Antoniou et al
[1], shown that this value can be found analytically or
numerically, via cubic interpolation or golden section
search. In this work, we calculate it numerically for all
deterministic methods.
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Figure 2: Local minima coordinates and objective
function value at each optimization iteration for
gradient based methods.
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Table 2: Results of optimization of Griewank function with 4 variables using gradient-based algorithms
for different initial guesses x0

.
x0 = [1,1,1,1] x0 = [100,100,100,100]

Method Elapsed Time(s) Iterations F(x) Elapsed Time(s) Iterations F(x)

Steepest Descent 0.0784 29 1.154e-10 0.0977 30 9.828
CG (Fletcher-Reeves) 0.0698 21 7.588e-11 1.9725 342 9.828
CG (Polak-Ribiere) 0.0909 24 1.301e-10 0.1123 27 9.828
quasi-Newton (DFP) 0.0336 8 2.497e-11 0.0433 10 9.828

x0 = [0,0,0,0] x0 = [100.48, 97.645, 97.797, 100.328]

For the heuristic method of the particle swarm the
values of the sociability and individuality parameters
c1 and c2, respectively, were kept equal to 2, a well-
established value in the literature and the inertia pa-
rameter ω used was equal to 0.5. To obtain the best
result for the global minimum and to evaluate the in-
fluence of the number of particles in the solution, 200
independent optimization processes were performed for
each quantity of individuals (20, 60, 100 particles) with
a maximum number of 500 iterations per optimization,
this measure was adopted, because in a single stochas-
tic optimization the results may not be satisfactory. The
search interval, in this case, was kept at -600, 600 in all
n variables analyzed. The results are shown in Table 3.
In the Figure 3, the histograms of the optimizations per-
formed for n = 2 and n = 4 are shown, it is possible to
notice that with the increase in the number of particles
the distribution range narrows, since there is a greater
probability that some of the particles are close to the
global minimum. For results with n = 2, it can be noted
that the best optimization reached the global minimum
and as the number of particles increased, the average
tended to approach the global minimum with smaller
standard deviations. Regarding computational time, it
is possible to conclude that heuristic methods are more
costly for a number of particles over 60. For 20 parti-
cles in the population, we note that the elapsed time is
similar to that of deterministic methods.
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Figure 3: Histogram for optimization procedures
using the Particle Swarm Optimization technique.

Table 3: Results for optimization of Griewank function with the heuristic method particle swarm (PSO).

n Particles gBest Mean Standard Deviation Elapsed Time (s)

1
20 0.0000 0.00128 3.318e-03 0.015821
60 0.0000 0.00005 6.958e-04 0.055438

100 0.0000 0.00000 0.0000 0.077683

2
20 0.0000 0.03823 0.04538 0.03109
60 0.0000 0.01285 0.01447 0.09956

100 0.0000 0.00843 0.00830 0.15285

4
20 0.009864 0.23825 0.1763 0.06310
60 0.009857 0.13132 0.1068 0.15769

100 0.007396 0.09800 0.0756 0.24793
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5 Conclusions
A gradient-based and heuristic optimization techniques
are compared to solve the Griewank benchmark opti-
mization function. We presented the implementations
of the algorithms, based on different formulations from
the simplest to sophisticated. The Griewank function
has a multimodal behavior, with a large number of lo-
cal minima. The deterministic method is not recom-
mended for this type of function, because is neces-
sary to have previous information of global minima
coordinates, otherwise, the search procedure became
extensive. With a different formulation, the heuristic
method of particle swarm not require previous infor-
mation about the model and can sweep large space do-
mains. However, this approach demands a computa-
tional effort larger than deterministic methods.
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