

SYNTHESIS AND CHARACTERIZATION OF FLUBENDAZOLE COCRYSTALS

dos Santos, C. R. M.¹; Carvalho, F. M. S.*²; Antonio, S. G.³; Paiva-Santos, C. O.³; Bou-Chacra, N. A.¹; Ferreira, F. F.⁴; Flores, R. L. R.¹; de Araujo, G. L. B.¹

¹ Dept. de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil

² Dept. de Mineralogia e Geotectônia, Instituto de Geociências, Universidade de São Paulo, São Paulo, SP, Brazil

³Dept. de Físico-Química, Instituto de Química, , Universidade Estadual Paulista, Araraquara, SP, Brazil

4 Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil

*flavioms@usp.br

Background/problem statement: Flubendazole (FBZ) has a great potential for the treatment of lymphatic filariasis in humans, but is poorly absorbed in the current formulations available due its low solubility in water. Objective: The present work describes the synthesis and characterization of FBZ cocrystals in combination with carboxilics acids.

Methods: Mechanochemical liquid-assisted grinding method was used to obtain mixtures corresponding to 1:1 stoichiometric ratios of flublendazole and the cocrystal former. The mixtures were evaluated by X-ray powder diffraction (Bruker D8 Advance). Results: The XRPD patterns (Fig.1) show a potential cocrystal formation with maleic acid and no evidence of cocrystal with aspirin as former.

Conclusions: The combination of flubendazole with maleic acid with application of mechanosynthesis has great potential to obtain cocrystals and can represent a new way for the development of a new oral solid dosage form containing flubendazole.

