

Thermal analysis and phase relations in the pseudobinary system La2W2O9–Li2W2O7

de Moraes, J. R.¹; Klimm, D.²; Mazzocchi, V. L.¹; Parente, C. B. R.¹; Ganschow, S.²; Baldochi, S. L.^{1,*}

¹ Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo/SP, Brazil ²Leibniz Institute for Crystal Growth, IKZ, Berlin, Germany

*baldochi@ipen.br

Tetragonal scheelite-like double tungstates belong to the family of ARE(WO₄)₂ compounds constituted by alkali (A = Li, Na, K) and rare earth (RE = Y, Sc, La – Lu) cations. The structures are disordered where the alkali and rare earth cations are statistically distributed at the same lattice site. Such cationic distribution strongly influences the optical properties of the materials generating a locally variable crystalline field which leads to the broadening of the absorption and luminescence lines of the dopant ions. This property is highly desired for solid state lasers. The double tungstates ARE(WO₄)₂ were often described as intermediate phases in the A₂WO₄ – RE₂(WO₄)₃ binary systems. However, contradictory results relative to phase diagram for Li-La, about the melting behaviour of LiLa(WO₄)₂ were observed on the growth of single crystalline fibers for laser applications. In this work, we propose an experimental phase diagram for the La₂W₂O₉–Li₂W₂O₇ pseudo-binary section. The construction was based on differential thermal analysis and the phases were determined by X-ray powder diffraction with subsequent Rietveld analysis. The pseudobinary phase diagram La₂W₂O₉–Li₂W₂O₇ contains the 1:1 intermediate phase LiLa(WO₄)₂(ss) = x Li₂W₂O₇ – (1 – x) La₂W₂O₉ with a homogeneity region $0.48 \le x \le 0.546$. LiLa(WO₄)₂ undergoes peritectic melting at 998±5°C for x = 0.48. A eutectic point exists between LiLa(WO₄)₂ and Li₂W₂O₇ at 722±5°C and 90mol% Li₂W₂O₇