

HIGH-PRESSURE STUDY OF Ti50Ni25Fe25 POWDER PRODUCED BY MECHANICAL ALLOYING

Ferreira, A. S.¹,*; Rovani, P. R.²; de Lima, J. C.³; Pereira, A. S.⁴

A nanostructured $Ti_{50}Ni_{25}Fe_{25}$ phase (B2) was formed by mechanical alloying and its structural stability was studied as a function of pressure. The changes were followed by X-ray diffraction. The B2 phase was observed up to 7 GPa, and for larger pressures, the B2 phase transformed into a trigonal/hexagonal phase (B19) that was observed up to the highest pressure used (18 GPa). Besides B2 and B19, a segregation of elemental Ni and the formation of FeNi₃ were observed. With decompression, the B2 phase was recovered. Values of bulk modulus for the B2, B19, elemental Ni and FeNi₃ phases were obtained by fitting the pressure dependence of the volume to a Birch–Murnaghan equation of state (BMEOS).

¹Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil

²Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

³Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil

⁴Departamento de Materiais, Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

^{*}ailtonsfn@hotmail.com