
 

Abstract—In physics, we often make use of the spatial 

properties of a system in order to choose a particular geometry to 

describe it. However, some geometric systems are so simple that 

we can hardly consider the possibility of their adoption in 

describing complex physical systems. It is known that, in areas 

such as crystallography, there are recurring problems involving 

discrete geometries, given the nature of the study subject. In this 

work, we show an alternative way of obtaining the atomic 

coordinates for a crystal using three steps: Finding a base 

geometric model, applying laws which help us in picking the 

adequate locations in this geometry and then applying a 

transformation which takes the geometric model and give us the 

final atomic coordinates. To illustrate this idea, we depart from 

the fundamental concepts of a particular model, the Manhattan 

Geometry, and will demonstrate how it can be a valuable tool in 

describing many structure types, from simple cubic to 

quasicrystalline lattices.  
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I. INTRODUCTION 

OWADAYS in crystallography, it is commonplace to 

utilize computational modelling to assist the interpretation  

of experimental results and predicting new ones. In this 

manner, computational physics represents a fundamental tool 

in diminishing costs and optimizing results all over the world, 

while also building a direct link between experimental data and 

the many theoretical models regarding the subject[1]. 

However, there is a myriad of unsolved puzzles in the 

computational crystallography, most of which can be reduced 

to reproducing crystalline structures by means of coordinates 

inside a digital data file[2]. From diffraction and microscopy 

experiments, we are able to find parameters that enable us to 

recreate these structures. But how, exactly? Today, what we do 

is to manually build a set of atoms which, when replicated 

through R3, ends up with the desired crystalline shape [3,4]. 

Many are the problems associated to this method. To start with, 

we can highlight the great manual labor required to build the 

unit cell of the crystal we are dealing with, which might take 

hours or even days of manual calculations and tests involving 

several prototypes.  

The most significant flaw of the unit cell replication method 

is that it only works for perfectly periodic crystals. Currently 

we know that there exists many kinds of materials which do not 

possess exact periodicity, ranging from amorphous materials 

(as is the case of glasses [5]) to more structured materials, such 

as liquid crystals[6] and quasicrystals[7]. All these materials 

are targets for recent scientific research in search of new 

technological solutions[8-10]. It would thus be interesting to 

have a more general method, also encompassing those cases. 

We propose here another manner to build a structure we have 

in mind, be it crystalline or not. Initially we produce a grid 

containing every possible coordinate to be occupied by a 

hypothetical atom in a geometry suited to each problem, 

enabling us to then test such positions one by one against a 

condition, indicating whether or not it is adequate to model the 

desired structure. After that, a transformation would map the 

coordinates encountered to the final R3 coordinates. 

Although this idea seems complicated, when we speak of 

atoms in an ideal (non-relaxed and periodic) crystal, its atoms 

tend to occupy positions in a well known lattice, namely the 

Bravais Lattice. We can start from this lattice in order to choose 

a mathematical model which fits our problem. In spite of not 

being the most general model possible, we shall establish ahead 

how it is suitable to many problems. 

  

II. MATHEMATICAL FOUNDATIONS 

Before we begin in earnest with the problem of building 

crystalline structures from computer models, we will see some 

basic ideas behind the method presented here. We will start by 

introducing the Manhattan Geometry, which is the 

mathematical model that we will use as an example. Then we 
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will shortly go through the Formation Laws, emphasizing their 

fundamental importance to the generality of the method. 

A. Manhattan Geometry  

Manhattan Geometry, or also Taxicab Geometry, is a 

geometric model introduced in the 19th century by lithuanian 

mathematician Hermann Minkowski[11]. The practical 

motivating problem for this geometry takes scene on the streets 

of Manhattan. A taxi driver receives a hypothetical call for a 

ride at a certain corner denoted A. Upon arrival, the passenger 

would ask the driver to drive to another corner, denoted B. 

In this moment, the taxi driver starts to think what is the 

smallest possible path between the two corners on the streets. 

The roads found on the island of Manhattan are of a very 

particular geometry. A set of roads, parallel to each other, goes 

from south-southwest to north-northeast, being crossed by 

another set of roads, also parallel to each other, while also being 

orthogonal to the ones belonging to the first set. We might as 

well make use of such geometry in thinking about this problem, 

for it allows a simple interpretation: our taxicab has to move 

around the corners of a rectangular grid, going from point A to 

point B. This way, the car is kept from crossing diagonal paths 

in the squares of our grid, which clearly agrees with the real 

example given. 

 

 

Figure 1: Schematic representation of the problem: 

hypothetical trajectories 1, 2, 3 and 4 are possible paths that a 

taxicab can follow to reach corner B departing from corner A, 

moving toward B in every step. 

 

As seen in Figure 1, trajectories that always follow the 

general direction of the final destination, with no turning back 

nor going further from point B, are of the same length. In the 

case of our scheme, should we consider the distance between 

two corners to be ξ, the total distance from A to B would be 

well described by 17ξ. To simplify this analysis and determine 

the uniqueness of shortest path lengths, Hermann Minkowski 

introduced the following metric: 

|y - y| + | x- x| = B)d(A, ABAB  

Where d(A,B) represents the distance between points 

),( AA yxA and ),( BB yxB  , in a Z2 grid, which means 

this pairs belong to the grid Z2 contain integers. This notion is 

naturally extensible to the R2 or R3 spaces. 

This metric can be obtained from more fundamental concepts, 

for instance, being induced by an internal product [12,13]. For 

now, we focus our attention solely on the metric. 

The real meaning of this metric lies in the simplicity of 

summing minimal vertical displacement and minimal 

horizontal displacement in the grid, in order to move from point 

A to point B. Similar to what we have done in describing Figure 

1, we denote by ξ the length of  an edge (the minimal distance 

between any two distinct points), and then the function d(A,B) 

is restricted to values that are multiple of ξ. We can also 

consider, as means of making our equations easier (with no loss 

of generality), that ξ = 1. With this the distance from A to B in 

figure 1 is simply given by . Note now that the image of  is N0. 

 

B. Formation Laws  

Let us then submit our metric function to a first test. Our 

objective is to propose laws which utilize d(A,B) and the 

natural symmetries given by our model, so we will first suggest 

a two dimensional example to illustrate the idea. We start with 

the Z2 plane, alongside a coordinate axis and a coordinate 

origin. The plane itself already gives us the first fundamental 

element: the set of every possible position. Based on its 

elements we shall apply the test. In our example, we can 

express this set formally as  Z} n ,n | )n ,{(n = yxyx Ν . 

Now we shall introduce a new function )},d( = |||| 0nn , 

that is, given by the distance from n  to the coordinate origin 

0 . Such function is very important in metric spaces. 

Then, we proceed by considering the points in our  set, and 

test if every single point meets the following condition:  “If the 

distance from point n to the coordinate origin is an even 

number, then n belongs to the so called ‘Set of the Even Points’ 

( evenN )”, which can be formally expressed as: 

0,1,2,... =k  ;k  2 = ||||  3Z
nn  evenN  

That being done, we are going to plot in our Z2 plane every 

point belonging in evenN . Figure 2 shows the final result. 

 



  

Figure 2: Result of applying the proposed method over a 

simple 2D space, using as test the law for the Set of the Even 

Points. 

 

On Figure 2's first quadrant, we purposefully draw a set of 

edges linking a few points. Should one already have familiarity 

with common crystalline structures, one would already have 

noticed that such pattern appears on the surface of a unit cell for 

a face centered cubic (FCC) crystal. What seems to be a 

coincidence is a recurrence of the geometric model which 

perfectly fits these kinds of structures. 

We can also choose a myriad of other laws, and test their 

results by comparing with structural models we would find in 

condensed matter. The more adequate the geometric model is to 

a problem, the simpler our laws tend to turn out. On the other 

hand, badly chosen models may difficult the coordinate 

adjusting, leading us to much more complicated laws. It is 

required to cautiously weight the situation, considering the 

difficulties we are willing to overcome in either dealing with a 

difficult law or a potentially long search for a simple one. 

In supplementary material, we show this procedure has a 

great degree of generality and can be applied to create any set of 

points. We can affirm this, because every set containing known 

points has a selection law highlighting these points from a more 

encompassing set. The idea of such demonstration is also 

shown as supplementary material. 

However, the fact is that each sequence has a formation law. 

Mathematicians seeking the so called formation law of prime 

numbers may find solace from this fact, given that we have a 

situation of the same nature: just as in the case of primes, for 

any other given set of points we are ensured of the existence of 

an associated formation law, no matter how sophisticated that 

law might be. Therefore it is worthy to contemplate the range of 

possibilities we are encompassing from this method. 

III. APPLICATION REGARDING THE STUDY OF CRYSTALS 

We have previously seen that we can use formation laws to 

fragment sets of points in a new set of possible positions. We 

have also plotted such points and verified they can give us 

structures similar to those found in crystals and other solids. 

Now, we will present test laws and how they can be useful in 

creating computational models for some kinds of crystals, after 

being properly scaled. As supplementary material, we show a 

small catalog of lattices for which we have already generated 

reasonably simplified laws. Here we will merely present the 

general aspect of the Bravais Lattices, to clarify how our 

proposed method is applied to those. Also, we shall give special 

attention to the case where we build a nearly periodic crystal 

using Manhattan Geometry as the starting point. 

 

A. The Bravais Lattice 

Auguste Bravais, in the year 1848, showed that crystals may 

be well described by periodic lattices carrying a geometry fixed 

by few parameters. We denote this structure by Bravais Lattice. 

In a certain way, if we put both models side by side, we can spot 

similarities bet ween them. Manhattan Geometry is a self 

sufficient starting point for the creation of perfect crystal 

prototypes, albeit lacking the characterizing Bravais Lattice 

parameters, such as the inclination of the unit cell (α, β and γ 

angles) and also the lattice parameters (lengths a, b and c) [14]. 

We are then able to build our ideal models in the first 

geometry indicated and later introduce a transformation 
33 RZ: T  that will associate points in the ideal lattice, 

previously selected, to their corresponding points in the Bravais 

Lattice with the proper characteristic parameters. 

In this work we will present some structures such that 

2        , allowing us to write T as 

)nc ,nb ,n(a  )T( 302010n . For the cases we work with, 

qa c  b  a 000  , where a is the lattice parameter and q = 

1/2 (In particular, for the diamond, we have q = 1/4). 

However, at section 3.2, we present a structure completely 

different from the rest, where a major part of our plot is focused 

solely on a different T transformation. Such will be the case 

because in building the structure, we shall first pick points from 

a space with more than 3 dimensions, and T will then assume 

the role of projecting these points over R3, as we shall see. This 

is required because the Bravais Lattice does not do a good job 

in describing that case, being based on the direct periodicity of 

the crystal, which is not always verified in nature. 

With that in our hands, we have all the mathematical tools 

required to build crystal models.  

 



1) Example: Face Centered Cubic Lattice (FCC) 

This is the case of many metals at room temperature and 

noble gases at a high pressure. Examples are Au, Ag, Cu, Ni, 

Ce, Kr and Xe, among others. The set we are interested in 

regarding this system is the already defined Set of Even Points. 

In this way, the atomic species α must lie in positions such that: 

 

... 2, 1, 0, k   k, 2  ||||    3Z
 nn N  

 

Then, we multiply the given coordinates by a proportionality 

constant (in this case, half the lattice parameter, a0/2), arriving 

at the ideal model of the crystalline structure. 

There are also metallic alloys possessing FCC geometry: 

Ni3Au, Cu3Au and CuAu, to mention a few. Here, when writing 

our law, we ought to pay attention to the proportion with which 

they appear in the lattice and distribute species in a way to 

preserve this proportion. Let us write the law for an α3β 

molecule as example: 

 

 















ii

Z

n  n | 2

0,1,2,...k ;k  2  ||n||

    

3

r allis true fo

Nαn  

 















ii

Z

n  n | 2

0,1,2,...k ;k  2  ||n||

    

3

east onee for at lis not tru

Nn  

 

Based on this law, we can write expressions describing 

whatever structures of the type αnβm we wish. We also know, 

based on what we have already seen, that similar laws can be 

used for ternary alloys, but this is a more delicate problem that 

is not going to be discussed here. 

 

 

Figure 3: Ilustration of the FCC model for a Cu3Au (type α3β) 

crystal. On the right, unit cell of the FCC lattice, naturally 

arrived as a consequence of the laws adopted in our method. 

 

B. Quasicrystals: the Penrose Tiling} 

Quasicrystals, or also "nearly periodic crystals", are crystals 

of a homogeneous, ordered and isotropic structure, but a non 

periodic one. These materials surfaced from a experimental 

verification made by Dan Shechtman[15,16], who by 1982, 

while studying an Al-Mn alloy, noted the diffraction pattern of 

said material did not match the theoretical preview for classic 

crystals, even though it had a well defined structure. In 2011, 

this work gave Shechtman a Nobel Prize. 

Since the first observation of a quasicrystal, hundreds of 

others have been reported and confirmed. Albeit not so 

commonly, we can find these kinds of patterns in many metallic 

alloys and some polymers. Quasicrystals are found more 

frequently in Al based alloys (such as Al-Li-Cu, Al-Mn-Si, 

Al-Ni-Co, Al-Pd-Mn, Cu-Al-Fe, among others), but other 

compositions have also been identified (Cd-Yb, Ti-Zr-Ni, 

Zn-Mg-Ho, Zn-Mg-Sc, In-Ag-Yb, Pd-U-Si, and more). 

Although this kind of pattern is relatively new to condensed 

matter physics, mathematicians have been studying it since the 

1960's. Thus, we already possess knowledge of a myriad of 

nearly periodic and organized patterns to apply in the structure 

of matter. 

Perhaps the most famous of mathematical nearly periodic 

patterns is the Penrose Tiling (also called Penrose Mosaic). It 

receives the name due to Roger Penrose [17], who studied it 

during the 1970's. Because it is a completely organized yet 

aperiodic tiling of the plane, this pattern is an extremely 

adequate model for a quasicrystal. 

 



      

Figure 4: In the figure to the left, we see the exemple of Penrose 

Mosaic, generated by the aforementioned methods. To the 

right, we zoom in on the pattern and separate between identical 

pieces integrating the tiling. It can then be noticed that the 

projection ends up creating a set of identical tiles that repeats 

itself across the plane in a nearly periodic manner. 

 

We will begin from results obtained by G. G. Naumis and J. 

L. Aragon[18], who have demonstrated a method with which 

we can project a grid of multiple dimensions over a plane, or 

even the R3 space, enabling us to obtain quasicrystalline 

patterns such as Penrose's. The mathematical details behind the 

model suggested by them can be seen at the original article, and 

here the general idea about the model is going to be presented, 

displaying how it fits in our scheme. 

For the case of a two dimensional pattern, we start by taking 

a set of points in a non real five dimensional space of integer 

coordinates (no more than a Manhattan Geometry, but in five 

dimensions). This is our N set. We could now apply a test law, 

but it would be a trivial one (in the model proposed by Naumis 

and Aragón, every point in N is valid in order to describe the 

quasicrystal). 

In this moment, we apply the T transformation to each 

element in N, mapping them to points in R2 corresponding to 

the vertices of the pattern (i.e. atoms of the quasicrystal). It is 

worthy of notice that a major part of the problem in spawning 

the coordinates is solved by T itself, and not by the law 

selecting points. This is such because the domain space of our 

transformation is already well adjusted to our problem, making 

our formation law not only simple, but also disposable. The five 

dimensions present are directly linked to the Bragg's law 

diffraction patterns we expect to see from these crystals, as well 

as what was originally observed by Shechtman. 

The quasi-periodicity can also be related to the position we 

put the R3 space relative to the space of tested points. A relation 

of this kind, where the unitary vectors in R3 are the straight 

equivalents of 3 base vectors from a higher space, gives us a 

direct projection, spawning a simple cubic pattern. In the 

example here presented, the projection of unitary vectors in Z5 

Manhattan space results in five vectors corresponding to our 

edge coordinates of a pentagon with its center at the coordinate 

origin, causing the appearence of non trivial patterns over our 

projections. For a tridimensional quasicrystal, we can adopt a 

directly analogue treatment, for instance, using the directing 

vectors normal to the faces of a regular solid (such as a 

dodecahedron) as projections of unitary ones in a space with 

dimensionality higher than that of R3. 

In Figure 4 and  5, we can see simple cases of two 

dimensional quasicrystals spawned by means of this method. 

 

Figure 5: 2D structure of a simple quasicrystal built using the 

logic presented in here. It becomes evident that the repetition of 

a unit cell would not properly describe this pattern. 

IV. CONCLUSION 

 

As we have seen, starting from a certain geometry, with a law 

selecting elements of a subset of it, and from a transformation 

relating the elements of such subset to coordinates in real space, 

we may build ideal models of atomic structures, taking 

advantage of some natural periodicities of Zn in order to write 

such law. We have also seen that, once we have a good 

knowledge of the set's elements, it is always possible to write a 

test law describing these points, which opens the possibility of 

testing for ternary and quaternary alloys and quasicrystals, 

among many others. 

It was also shown that a fine tuning can be done, picking 

among geometries which simplify the laws describing elements 

in the desired subset of Zn, as seen in the formation laws 

presented for cubic lattices. However, at times it might be more 

useful to keep a more complex transformation, using a simple 

space to solve a problem with complicated symmetry, like the 

case for the 2D quasicrystal following the Penrose Pattern. 

But we may also question ourselves as to what news all this 

brings to crystallography or to the modelling of crystals. In fact, 

we already know efficient techniques to the construction of 

periodic crystal lattices for simulations, mainly by means of 

replicating a basic building block which would spawn the 

whole structure from its repetition. The method introduced here 

in reality brings a more general approach: instead of looking for 

a unit cell and repetition directions, we search for a law giving 

us the position of every atom in an alternative geometry space 

and use a transformation to spawn coordinates in real space 



through that set. Thus, we gain a tool which does not only 

attack the problem of building periodic structures, but that 

could also create any type of atomic structure, be it organized or 

not. Such safety arrives exactly from the fact that any subset of 

points has a law picking them from a more general set, which in 

our case is the Manhattan space. 

Logically, this new technique involves a cost: the simplicity 

of the test law is closely related to the one building it and his or 

her ability of recognizing numerical patterns, or implementing 

code which is able to do that. We also face the problem of 

writing the appropriate transformation, adequating the level of 

complexity of each part in our model, so it can work in a simple 

manner and reduce possible difficulties in its implementation. 

It is also important to note that this method does not 

necessarily solve the current problems of crystallography, but 

indicates a different way to attempt solving them. If a 

computational crystallographer, for example, tries to find the 

structure that has generated a given pattern in a X-ray 

diffraction, he can now construct a code which starts with a 

simple geometric system and then applying various formation 

laws, generate a set of digital samples. Making theoretical 

diffraction patterns, one could compare the patterns found 

computationally with previous data and then finally point out 

which ones are the formation laws which led to structures 

closer to the real one. 

Fortunately, we recall here that for the cases presented in this 

work, everyone may straight ahead make use of the results 

shown. That being another practical facet of the method: the 

logical effort of choosing an initial geometry, the formation law 

for points and a transformation over to real space, is only 

required once. After being cataloged, the result can be used 

again. With that, we have significant gains in terms of 

computational time and effort in building structures, mainly in 

the case of complex alloys (whose unitary cells are simply too 

big and difficult to manually build) and quasicrystals (where 

the original idea of replicating basic units falls flat). 

We would also like to thank FAPEMIG, CNPq and Capes for 

the financial support given throughout the development of this 

project. We also thank all colleagues of the Department of 

Physics - UFJF, which gave us hours of conversations and 

discussions on the topics presented in this paper. 
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Abstract—This is a supplementary material that seeks to 

expose and clarify some concepts and results seen in the main 

paper. In the first section, we show some applications of the 

proposed method in the structures with cubic crystalline lattice. 

Then we will make a more mathematical development of the 

concepts involved when we speak of Manhattan Geometry, 

starting from the fundamental concept of a Metric Space. Finally, 

we demonstrate the generality of the formation law in a very 

simplistic (but formal) way.  

Index Terms—Crystallography; Selection Laws; 

Computational Physics  

 

I. PRACTICAL EXAMPLES: OTHER CUBIC STRUCTURES 

A. Simple Cubic (SC) 

As example of cubic structures we can cite Nitrogen (at a 

temperature of approximately 20K). We note that taking the 

whole of ℤ3  already gives us the desired symmetry for this 

system. We can now face the matter of describing diatomic SC 

crystals, a very common case among salts and oxides. As 

example we consider here the proportion type 𝛼𝛽  (as in the 

case of NaCl crystals) and write a law: 

𝐧 ∈ 𝐍𝛼⇔ ‖𝐧‖ℤ3  = 2𝑘 + 1;      𝑘 = 0,1,2, … 

𝐧 ∈ 𝐍𝛽⇔ ‖𝐧‖ℤ3  = 2𝑘;              𝑘 = 0,1,2, … 

What we see is no more than 𝛼 belonging to the Set of Odd 

Points and 𝛽 belonging to the Set of Even Points, both defined 

in the paper. It also gives rise to the fact that if we completely 

remove either species, we end up with the FCC lattice. 

 

 

Figure 1: Illustration of the SC model for a NaCl (type 𝛼𝛽) 

crystal. On the left, unit cell  of the SC lattice, naturally 

arrived as a consequence of the laws adopted in our method. 

 

B. Body Centered Cubic (BCC) 

This crystal is usually made up by Alkaline elements under 

low temperatures (~5K) and some transition metals such as 

Cr, Nb, Mo and W, among others. For pure crystals, we 

consider the set: 

𝐧 ∈ 𝐍𝛼⇔ 𝑛1mod 2 = 𝑛2mod 2 = 𝑛3mod 2 

 

At first glance, this formation law is very different from the 

previous ones: the points which interest us are the ones where 

every coordinate is even or every coordinate is odd. We can 

use this in our favor and build a law for a type 𝛼𝛽  crystal, As 

in the case of NiTi. It follows that: 

𝐧 ∈ 𝐍𝛼⇔ 𝑛1mod 2 = 𝑛2mod 2 = 𝑛3mod 2 = 0 

𝐧 ∈ 𝐍𝛽⇔ 𝑛1mod 2 = 𝑛2mod 2 = 𝑛3mod 2 = 1 

This case also allow us to see how quickly these laws can 

become sophisticated compared to the very simple FCC 

lattice. 
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Figure 2: Illustration of the BCC model for a NiTi (type 

𝛼𝛽) crystal. On the right, unit cell  of the BCC lattice, 

naturally arrived as a consequence of the laws adopted in our 

method. 

 

C. Diamond 

A crystal with a diamond-type stacking has a very resilient 

structure, such as crystalline silica, the Si crystal or diamond 

itself, which gave the shape its name. This structure is a little 

bit more complicated and has a formation law even more 

distinguished from the last ones: 

 

𝐧 ∈ 𝐍𝛼⇔ 

{
 
 
 

 
 
 

𝑛1mod 2 = 𝑛2mod 2 = 𝑛3mod 2 = 0

                             𝐚𝐧𝐝 (𝑛1 + 𝑛2 + 𝑛3)mod 4 = 0

𝐎𝐑

𝑛1mod 2 = 𝑛2mod 2 = 𝑛3mod 2 = 1

                            𝐚𝐧𝐝 (𝑛1 + 𝑛2 + 𝑛3)mod 4 = 0

 

 

It might look confusing at first sight, but such law gives us 

precisely the appropriate elements in ℤ3  that, when scaled, 

inform the positions of atoms inside a diamond crystal. If we 

take the first condition to 𝛼 and the second for 𝛽, that law can 

also be useful to build zinc blende type structures. 

 

Figure 2: Illustration of the diamond crystal model. 

Structure size is purposefuly upgraded to show how we can 

build any amount of atoms, once a proper formation law is 

found. On the right, unit cel of the diamond lattice, naturally 

arrived as a consequence of the laws adopted in our method. 

 

II. METRIC SPACES 

Definition 1. We denote by Metric Space a set 𝑺 allied by a 

function 𝑑: 𝑺 × 𝑺 → ℝ which obeys the following properties: 

(i) 𝑑(𝑥, 𝑦)  ≥  0 

(ii) 𝑑(𝑥, 𝑦)  =  0 ⇔  𝑥 =  𝑦 

(iii) 𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥) 

(iv) 𝑑(𝑥, 𝑧)  ≤  𝑑(𝑥, 𝑦)  +  𝑑(𝑦, 𝑧) 

For all (𝑥, 𝑦) ∈ 𝑺 × 𝑺. In this manner, 𝑑 is said to be the 

distance function, or metric of  𝑺. 

 

A. Manhattan Metric  

Though we have already introduced a function 𝑑 which 

describes a metric relationship, we will now present a more 

fundamental concept: 

Definition 2. Let 𝛼 = (𝑎1, 𝑎2) and 𝛽 = (𝑏1, 𝑏2), such that 𝛼,
𝛽 ∈ 𝑆, then: 

〈𝛼, 𝛽〉𝑺 = 

{
 
 

 
 
+|𝑎1, 𝑏1| + |𝑎2, 𝑏2|; 𝛼 and 𝛽 lie in the same quadrant𝑠

−|𝑎1, 𝑏1| + |𝑎2, 𝑏2|;
𝛼 and 𝛽 lie in neighbor quadrants,
such that 𝑎1𝑏1 < 0 and 𝑎2𝑏2 > 0

+|𝑎1, 𝑏1| − |𝑎2, 𝑏2|;
𝛼 and 𝛽 lie in neighbor quadrants,
such that 𝑎1𝑏1 > 0 and 𝑎2𝑏2 < 0

−|𝑎1, 𝑏1| − |𝑎2, 𝑏2|; 𝛼 and 𝛽 lie in the opposit quadrants

 

We are adopting 𝑺 as two dimensional and its elements as an 

ordered pair of elements in ℝ. It is important for the reader to 

observe that this treatment is a mere convenience for our case, 

where we will soon set 𝑺 = ℤ𝑛. 

Such relation defines 〈𝛼, 𝛽〉𝑺 as an inner product of 𝑺. An 

inner product must verify hermitian symmetry, distributivity, 

homogeneity and positivity. The proof of these properties for 

the case of this product is not shown here, but can be seen in 

details on The Norm in Taxicab Geometry - C. Ekici, I. 

Kocayusufoglu & Z. Akça - Tr. J. of Mathematicas, 22 (1998), 

pages 295-307. 

Definition 3.  Let  𝛼 =  (𝑎1, 𝑎2)  ∈  𝑺, then: 

‖𝛼‖𝑺  =  √〈𝛼, 𝛼〉𝑺 + 2|𝑎1𝑎2| 

We define ‖𝛼‖ as the Norm of 𝛼 in 𝑺 space. It's simple to 

observe that: 

‖𝛼‖𝑺 = √𝑎1
2 + 𝑎2

2 + 2|𝑎1𝑎2| = |𝑎1| + |𝑎2| = 𝑑(𝛼, 0) 

However, we still did not show that ‖𝛼‖ is, in fact, a norm. 

Theorem 1. ‖𝛼‖𝑺 is a norm in 𝑺.  

Proof. As we are particularly interested in discrete 𝑺, it is 

true if ‖𝛼‖𝑺 verifies the following properties: 

(i) ‖𝛼‖𝑺 ≥ 0 

(ii) ‖𝛼‖𝑺 = 0 ⇔  𝛼 = (0,0) 



(iii) ‖𝑘𝛼‖𝑺 = |𝑘|‖𝛼‖𝑺  ∀𝑘 ∈ ℤ 

(iv) ‖𝛼 + 𝛽‖𝑺 = ‖𝛼‖𝑺 + ‖𝛽‖𝑺 

Let's show these properties: 

(i) ‖𝛼‖𝑺 = |𝑎1| + |𝑎2| ≥ 0  

(ii) ‖𝛼‖𝑺 = |𝑎1| + |𝑎2| = 0⇔ 𝑎1 = 𝑎2 = 0 ⇔ 𝛼 = (0,0) 
(iii) ‖𝑘𝛼‖𝑺 = ‖(𝑘𝑎1, 𝑘𝑎2)‖𝑺 = |𝑘|(|𝑎1| + |𝑎2|) = |𝑘|‖𝛼‖𝑺 
(iv) ‖𝛼 + 𝛽‖𝑺 = ‖(𝑎1, 𝑎2) + (𝑏1, 𝑏2)‖𝑺 = 

                  = ‖(𝑎1 + 𝑏1, 𝑎2 + 𝑏2)‖𝑺 = ⋯ ≤ ‖𝛼‖𝑺 + ‖𝛽‖𝑺 

 

In (iv), we omit some calculations which demonstrate the 

triangle inequality. The full proof includes a detailed analysis 

of every possible sign for the coordinates 𝛼 and𝛽. Such 

analysis can be easily found in literature. Along with the 

previously mentioned work, the reader can find the proof in 

other books, some of which are cited as bibliography.  

This norm may also be denoted by "L1 Norm" or "1-Norm", 

just as the euclidean norm is denoted by "L2 Norm" or "2-

Norm". (In a more general sense, the "L𝑃 Norm" or "P-Norm" 

is defined as ‖𝐱‖𝑃 = (∑ |𝑥𝑖|
𝑃𝑛

𝑖=1 )
1

𝑝.)  

 ∎ 

With this, we are at last able to build a metric induced by the 

norm: 

𝑑(𝛼, 𝛽) ∶= ‖𝛼 − 𝛽‖𝑺 = |𝑎1 − 𝑏1| + |𝑎2 − 𝑏2|     ∀𝛼, 𝛽 ∈ 𝑺 

And that is the Manhattan Metric. 

 

B. The ℤ3 Case 

Our objective from now on is to utilize the Manhattan 

Metric for the ℤ3 set. In other words, for every 𝐧 =
 (𝑛1, 𝑛2, 𝑛3) and 𝐦 =  (𝑚1, 𝑚2, 𝑚3) contained in ℤ3, we may 

seek 𝑑(𝐧,𝐦) from the definition: 

𝑑(𝐧,𝐦) =  |𝑛1 − 𝑚1| +  |𝑛2 − 𝑚2| + |𝑛3 − 𝑚3| 

We can naturally obtain a norm as well, defined by: 

‖𝐧‖ℤ3  =  |𝑛1| + |𝑛2| + |𝑛3| 

It is important to mention that, in fact, the values for the 

metric and norm are actually to be taken as elements in the 

field of real numbers (ℝ), but for this case, they assume values 

exclusively in ℤ. This treatment might justifiably sound 

unsettling, for ℤ is not even properly defined as a field in the 

same sense as ℝ is. Nonetheless, that does not modify by any 

means what was developed until here, though it is reassuring 

to mention we can actually define a "metric space over ℤ"  

with no great loss of properties, as long as we are able to adapt 

the metric, which is our case. Even then, we will maintain our 

rigour in defining structures.  

We denote the ℤ3 space, equipped with the metric 𝑑(𝐧,𝐦), 
by Manhattan Space. This metric space is the one we will 

work with from now on. 

 

III. GENETALITY OF THE SELECTION LAW 

 

Theorem 2. All known set of points in a metric space has at 

least one law of selection. 

Proof. We will suppose that we know all the elements for a 

generic subset𝑪, that is, 𝑪 = {𝒄1, 𝒄2, 𝒄3, … , 𝒄𝑛}; 𝒄𝑖 ∈ 𝑺 ∀𝑖 =

1,2,3, … , 𝑛. We intend to realize how we can create a 

mathematical law verified solely by these elements. 

This is a strong result, for it implies that every set should 

have a law  associated to its elements. In fact, this is a well 

known result for sequences: every sequence has a law of 

formation, regardless of our capacity of actually  describing it 

mathematically. Also, we know that for the case of numerical 

sequences, we can always write such law as a mathematical 

expression, which motivates, for example, the search for a law 

associated to the prime number sequence. 

Let us start by ordering the elements in 𝑪 (i.e as the subset 

was defined before, we just we need to create an order 

relation, no matter what. The order itself is irrelevant, being a 

mere tool for the demonstration). We initially consider the 

truncated sequence 𝑪1 = {𝒄1}. This sequence has the trivial 

formation law: 

𝐧 ∈ 𝑪1⇔  𝐧 = 𝒄1 

Now, we rewrite this expression in a way more convenient 

to our demonstration: 

𝐧 ∈ 𝑪1⇔𝑑(𝐧, 𝒄1) = 0 

Which, from the properties of 𝑑(𝐧,𝐦), goes straight back 

to our first expression. Let us now consider another set, 

truncated now at the k-th element, that is, the set 𝑪𝑘 =

{𝒄1, 𝒄2, 𝒄3, … , 𝒄𝑘}. We are then able to easily generalize the 

previously seen expression as: 

𝐧 ∈ 𝑪𝑘⇔∏𝑑(𝐧, 𝒄𝑖) = 0

𝑘

𝑖=1

 

Writing the formation law for our proposed sequence, we 

have shown that, once we know the terms belonging to a set 

and have defined a metric in the corresponding space, a law 

that will only be verified by the elements of that set can be 



built. The extension of this to the case of infinite sets is more 

delicate and will not be discussed here, but the core concepts 

remain the same. 

 ∎ 

The expressions we presented before do not assume the 

form of the last one, and it is so because in some cases, the 

formation laws can be written in highly simplistic ways. Here 

we arrive at a delicate matter on the method: obtaining the 

adequate law for a set (or crystal). We cannot give a clear 

recipe to obtain such expression, this task being very 

dependent of recognizing specific numerical patterns or 

writing software that can test through a variety of candidates 

for laws, by means of AI or genetic algorithms (simple 

examples like the FCC lattice, the law is easily found 

manually. But in the case of ternary alloys, a computational 

approach is highly recommended). It is important to recall that 

we have already shown the search is not in vain, for a law will 

surely always exist, albeit it might not be a simple one. 

 


