

Efeito Casimir em meios dielétricos

Rocha, J.R; Orlando, M.T. D

1 Programa de Pós-Graduação em Física, Universidade Federal do Espírito Santo, Vitória, ES, Brasil.

* e-mail: Jeffersonrocha2004@ig.com.br

Resumo

Em 1948, Hendrik Casimir demonstrou que, duas placas paralelas condutoras e neutras sofrem uma força atrativa devido a flutuações do campo eletromagnético no vácuo. Neste trabalho, foi investigado o efeito Casimir entre dois semiespaços paralelos separados por uma distância d, e de constantes dielétricas $\varepsilon_1 (\omega)$ e $\varepsilon_2 (\omega)$ intercalados por um espaço de constante dielétrica $\varepsilon_3 (\omega)$. Foram investigadas as forças entre as superfícies metálicas paralelas imersas entre os espaços e, discutida a contribuição dos plasmons no efeito Casimir nessas condições de contorno.

Abstract

In 1948, Hendrik Casimir showed that two conductive parallel and neutral plates experience an attractive force due to fluctuations of the electromagnetic field in a the vacuum state. In this study, was investigated the Casimir effect between two semi spaces separated by a distance d, and dielectric constants ε_1 (ω) and ε_2 (ω) interspersed by a space which dielectric constant is ε_3 (ω). Were investigated the forces between the parallel metal surfaces immersed among the spaces and discussed the contribution of plasmons in the Casimir effect in these boundary conditions.

Keywords (Palavras chaves): Casimir, Dielectrics, plasmons.

1. Introdução

A teoria quântica para o campo eletromagnético na ausência de qualquer fonte foi formulada por Born, Heisemberg e Jordan em 1926. A primeira aplicação foi feita por Dirac em 1927 que, tratou da emissão e absorção de radiação. A eletrodinâmica quântica (QED) prediz a existência de flutuações no campo eletromagnético mesmo na ausência de fontes, isto é um campo eletromagnético de vácuo, relacionado à energia de ponto zero ou energia de vácuo $E_0 = \frac{1}{2}\hbar\omega$. Em 1948, H.B.Casimir [1], demonstrou que uma das consequências da energia de ponto zero é uma força atrativa *F* entre duas placas condutoras, paralelas e neutras separadas por uma distância d:

Figura 1: Placas condutoras separadas por d

A generalização da teoria de Casimir para placas condutoras (Figura 1) pode ser feita considerando se se o caso de um meio dielétrico cuja constante é ε_3 (ω) entre dois semiespaços de constantes dielétricas ε_1 (ω) e ε_2 (ω) estes meios ocupam as regiões $0 \le z \le d, z < 0$ e z > d respectivamente como mostrado na figura 2.

Figura 2: Placas semi-infinita separadas por uma distância d separadas por uma camada de constante dielétrica ϵ_3

O cálculo da força entre os dois espaços semi-infinitos é feito com base na energia de ponto zero do campo eletromagnético, $E = \sum_{n} \frac{1}{2} \hbar \omega_n$ onde ω_n são os modos de frequência na situação retratada na (figura 2) [2].

2. Teoria

2.1 Quantização do campo eletromagnético e energia de ponto zero

A quantização do campo eletromagnético implica em escrever os observáveis em termos de operadores que aumentam ou, diminuem o número de certas quantidades discretas no sistema, essas quantidades são conhecidas como quanta de excitação. Essa descrição do campo eletromagnético em termos de operadores pode ser feita reescrevendo o Hamiltoniano do campo em termos de quantidades fundamentais. Dessa forma, escrevendo a hamiltoniana do campo eletromagnético em (2)[3,4,5]:

$$\mathcal{H} = \int \frac{1}{2\mu_0} B^2 + \frac{\varepsilon_0}{2} E^2 d^3 x$$
(2)

Reescrevendo (2) em termos do quadri-potencial $A^{\mu} \equiv (\Phi, \vec{A})$ lembrando que:

$$\vec{E} = -\vec{\nabla}\phi - \vec{A(r)}$$

$$\vec{B} = \vec{\nabla} \times \vec{A}$$
(3)

$$\mathcal{H} = \frac{1}{2} \int \left\{ \frac{1}{\varepsilon_0} \Pi^2 \left(r \right) + \varepsilon_0 \, c^2 \left[\vec{\nabla} \times \vec{A} \right]^2 \right\} \tag{4}$$

Onde $\Pi(r)$ é o momento canônico conjugado. Explicitamente, $\Pi(r) = -\varepsilon_0 E(r)$ e, assumindo a dependência espacial $A(\vec{r}) = A(0)e^{ikr}$, o Hamiltoniano pode ser reescrito em termos do espaço dos momentos,

$$\mathcal{H} = \int (\frac{1}{\varepsilon_0} \Pi(k)^2 + \varepsilon_0 k^2 A(k)^2) dk^3$$
(5)

A hamiltoniana (5) pode então ser reescrita em termos de operadores (6) e (7):

$$a(k) = \sqrt{\frac{\varepsilon_0}{2\hbar w}} \left[w A(k) + \frac{i}{\varepsilon_0} \Pi(k) \right]$$
(6)

$$a^{*}(k) = \sqrt{\frac{\varepsilon_{0}}{2\hbar w}} \left[w \boldsymbol{A}(k) - \frac{i}{\varepsilon_{0}} \boldsymbol{\Pi}(k) \right]$$
(7)

$$\mathcal{H} = \sum \int \hbar w \left[a^*(k) a(k) + \frac{1}{2} \right] dk^3$$
 (8)

O Hamiltoniano em (8) é o idêntico ao oscilador harmônico:

$$\left[\hat{A}(k),\Pi(k')\right] = i\hbar(k-k') \tag{9}$$

Ou, escrito de outra forma:

$$[\hat{a}(k), \hat{a}(k')] = i\hbar(k - k')$$
(10)

Blucher

Vale ressaltar que a quantização do campo eletromagnético proposta nessa seção foi feita no gauge de Coulomb isto é,

$$\Phi = \text{ constante}$$
(11)
$$\overline{\nabla}.\vec{A} = 0$$

Com base no hamiltoniano (9) é possível encontrar os autovalores de energia associados ao campo eletromagnético quantizado no estado fundamental. Aplicando o operador aniquilação no estado fundamental[3,4,5]:

$$a_{k\lambda}0\rangle = 0$$
 (12)

A energia deste estado é a energia de ponto zero E₀:

$$E_0 = \langle 0|H|0\rangle \tag{13}$$

$$E_0 = \sum_k \frac{\hbar w}{2} \tag{14}$$

2.2 O efeito Casimir

O efeito CASIMIR [1] descreve a força atrativa entre duas placas perfeitamente condutoras separadas por uma distância **d** no vácuo (ver figura 1) esse efeito ocorre devido a flutuações do campo eletromagnético nesse estado. Considerando uma cavidade de dimensões Lx, Ly e Lz, com as possíveis vibrações da cavidade isto é, $k_x = \frac{n}{L_x}\pi$, $k_y = \frac{l}{L_y}\pi$, $k_z = \frac{m}{L_z}$, sendo n,l e m números positivos inteiros.

$$k = \sqrt{k_x^2 + k_y^2 + k_z^2} = \sqrt{k^2 + k_z^2}$$
(15)

Para cada número de onda k_x , $k_y e k_z$ há dois modos de polarização, exceto para n_i igual a zero, pois, nesse caso há apenas um modo de polarização. Para $k_x e k_y$ esse fato não tem relevância uma vez que devido a L grande, $k_x e k_y$ podem ser tratadas como variáveis contínuas. Assim, igualando a energia de ponto zero à energia eletromagnética na cavidade para L muito maior que Lz:

$$\Sigma \frac{2\hbar w}{2} = \sum_{n,l,m} \pi \, \hbar c \sqrt{\left[\frac{n^2 \pi^2}{L^2} + \frac{l^2 \pi^2}{L} + \frac{m^2 \pi^2}{L_Z^2}\right]}$$
(16)

O fator 2 na equação (16) ocorre devido aos dois possíveis modos de polarização. Na situação física de interesse, $L_{Z=d}$, pois L é muito maior que L_{Z} . Assim, a energia a uma distancia d da cavidade é:

Blucher

$$E(d) = \frac{L^2}{\pi^2} \hbar c \sum_m \int_0^\infty dk_x \int_0^\infty dk_y \left(k_x^2 + k_y^2 + \frac{m^2 \pi^2}{d^2}\right).$$
(17)

A equação (17) leva a um valor infinito para a energia de ponto zero em um volume finito. Se d for feito arbitrariamente grande,

$$E(\infty) = \frac{L^2}{\pi^2} \hbar c \frac{1}{\pi} \int_0^\infty dk_x \int_0^\infty dk_y \int_0^\infty dk_z \left(k_x^2 + k_y^2 + k_z^2\right)^{1/2}$$
(18)

A equação (18) leva também a um valor infinito, portanto, a energia potencial U (d) quando as placas estão separadas por uma distância d é dada pela diferença entre as equações (17) e (18). Essa diferença é infinita, contudo, é possível extrair um significado físico a partir de um valor finito. Transformando a diferença $U(d) = E(d) - E(\infty)$ para coordenadas polares (r, θ) : \cdot .

$$U(d) = \frac{L^{2}\hbar c}{\pi^{2}} \sum_{m} \int_{0}^{\pi/2} d\theta \int_{0}^{\infty} \left(r^{2} sen^{2} \theta + r^{2} cos^{2} \theta + \frac{m^{2} \pi^{2}}{d^{2}} \right)^{1/2} r dr \quad (19)$$
$$- \left(\frac{d}{\pi}\right) \int_{0}^{\infty} dk_{z} \int_{0}^{\infty} r(r^{2} sen^{2} \theta + r^{2} cos^{2} \theta + k_{z}^{2})^{1/2} dr \int_{0}^{\pi/2} d\theta$$

De maneira a resolver o problema da regularização, isto é a diferença entre duas grandezas infinitas, é introduzida uma função de corte no integrando:

$$U(d) = \frac{L^2 \hbar c}{\pi^2} \frac{1}{2} \left[\sum_{m=0} \int_0^\infty r \left(r^2 + \frac{m^2 \pi^2}{d^2} \right)^{1/2} f \left(r^2 + \frac{m^2 \pi^2}{d^2} \right)^{1/2} \right] - \frac{d}{\pi} \int_0^\infty r (r^2 + k_Z^2)^{1/2} dr dk_Z f \left((r^2 + k_Z^2)^{1/2} \right)^{1/2}$$
(20)

Introduzindo agora a variável $t = \frac{d}{\pi}k_z$ e $u = \frac{d^2}{\pi^2}r^2$,

$$U(d) = \frac{L^2 h \pi^2 c}{4 d^3} \left[\sum_{m=0}^{\infty} \int_0^{\infty} \sqrt{(m^2 + u)} f\left(\frac{\pi}{d} [m^2 + u]^{\frac{1}{2}} du\right) - \int_0^{\infty} dt \int_0^{\infty} (u + t^2)^{1/2} f(\frac{\pi}{d} [u + t^2]^{1/2} du \right]$$
(21)

Definindo a função f(t) como:

$$f(t) = \int_0^\infty (u+t^2)^{1/2} f(\frac{\pi}{d} [u+t^2]^{1/2} du$$
 (22)

A diferença entre a série e a integral na equação (21) pode ser reescrita da seguinte forma:

$$U(d) = \frac{\pi^2 \hbar c}{4d^3} \left[\frac{1}{2} F(0) + \sum_{m=0}^{\infty} f(m) - \int_0^{\infty} f(t) dt \right]$$
(23)

Aplicando se a fórmula de Euller-maclaurin:

$$\sum_{m=0}^{\infty} f(m) - \int_{0}^{\infty} f(t)dt = -\frac{1}{2}[f(0) + f(\infty)]$$

$$+ \frac{1}{12}[f'(\infty) - f'(0)]$$

$$+ \frac{1}{720}[f'''(\infty) - f'''(0)]$$
(24)

Aplicando a equação (24) em (23):

$$U(d) = -\frac{\pi^2 \hbar c}{720 d^3}$$
(25)

A equação (25) é a energia associada a duas placas condutoras paralelas no vácuo, isto é a energia de Casimir. A força associada à energia descrita em (25) é encontrada calculando o gradiente da energia potencial,

$$F(d) = -\frac{\pi^2 \hbar c}{240 d^4} A \tag{26}$$

O sinal negativo em (26) se deve ao fato de que a força nessa configuração de placas paralelas no vácuo é atrativa[3,4,5,8,10].

2.3 O efeito Casimir em meios dielétricos

ε

A extensão do efeito Casimir para meios dielétricos pode ser feita a partir da teoria de Lifishitz[7]. Especificamente, para a situação ilustrada na figura 2, em que as constantes dielétricas são respectivamente[1,2,7,10,11]:

$$(z) = \begin{cases} \varepsilon_1 & z < 0 \\ \varepsilon_3 & 0 < z < d \\ \varepsilon_2 & z > d \end{cases}$$
(27)

As componentes diádicas de Green para as condições (27) devem ser expressas em termos dos modos TE (transversal elétrico ou H) e TM (transversal magnético ou E), dados pelas funções escalares de Green:

$$\left(-\frac{\partial^2}{\partial z^2} + k^2 - w^2\varepsilon\right)g^H(z, z') = \delta(z - z')$$
⁽²⁸⁾

$$\left(-\frac{\partial}{\partial z}\frac{1}{\varepsilon}\frac{\partial}{\partial z'}+\frac{k^2}{\varepsilon}-w^2\right)g^E(z,z')=\delta(z-z')$$
(29)

de forma geral $\varepsilon = \varepsilon(z) e \varepsilon' = \varepsilon'(z')$. As componentes não nulas de **g** são:

$$g_{xx} = \frac{1}{\varepsilon} \delta(z - z') + \frac{1}{\varepsilon} \frac{\partial}{\partial z} \frac{1}{\varepsilon'} \frac{\partial}{\partial z'} g^E$$
(30)

$$g_{yy} = w^2 g^H (31)$$

$$g_{zz} = \frac{1}{\varepsilon} \delta(z - z') + \frac{\kappa^2}{\varepsilon \varepsilon'} g^E$$
(32)

 $g_{xz} = i \frac{k}{\epsilon_{EI}} \frac{\partial}{\partial z} g^E \tag{33}$

$$g_{zx} - i\frac{k}{sc}\frac{\partial}{\partial z}g^E \tag{34}$$

Tomando o limite z=z',

$$g_{kk} = \left(w^2 g^H + \frac{k^2}{\varepsilon \varepsilon'} g^E + \frac{1}{\varepsilon \varepsilon'} \frac{\partial}{\partial z'} g^E\right) z = z'$$
(35)

Quando a segunda interface (figura 2) é deslocada de uma quantidade δd ,

$$\delta \varepsilon(z) = \delta d. \left(\varepsilon_2 - \varepsilon_3\right) \delta(z - d) \tag{36}$$

Seja A área da seção transversa de uma da região imersa entre os meios dielétricos,

$$\frac{\delta E}{A} = \frac{i}{2} \int \frac{dw}{2\pi} \frac{dk}{(2\pi)^2} \delta \varepsilon(z) g_{kk}(z, z, k, w) = -F \delta d$$
(37)

Onde a força por unidade de área é:

$$F = \frac{i}{2} \int \frac{dw}{2\pi} \frac{dk}{(2\pi)^2} (\varepsilon_2 - \varepsilon_3) g_{kk}(d, d, k, w)$$
(38)

Levando em conta que g^H, g^E e $\frac{1}{\varepsilon \partial z} \frac{\partial}{\varepsilon \partial z'}$ enquanto $\varepsilon \varepsilon'$ é descontínua z se aproxima de z' por lados opostos da interface então o termo $\frac{k^2}{\varepsilon \varepsilon'}g^E$ é aproximadamente $\frac{k^2}{\varepsilon_1\varepsilon_2}g^E$ deve se avaliar apenas um lado da interface , assim , a função de Green g^H para z,z'>d é:

$$g^{H}(z,z') = \frac{1}{2k_{2}} (e^{-k_{2}}|z-z'|) + re^{-k_{2}(z+z'-2d)})$$
(39)

Onde o coeficiente de reflexão é:

$$r = \frac{k_2 - k_3}{k_2 + k_3} + \frac{4k_2 k_3}{k_3^2 - k_2^2} d^{-1}$$
(40)

$$D = \frac{k_{2+}k_3}{k_{3-}k_2} \frac{k_{3+}k_1}{k_{3-}k_1} e^{2k_3d} - 1$$
(41)

A função de Green g^E tem a mesma forma da equação (39), apenas deve se levar em conta que k é substituído por $\equiv k'$, avaliando a função de Green apenas fora da interface (Figura 2) encontra se a força por unidade de área[3, 4, 5, 8,10]:

$$F = \frac{i}{2} \int \frac{dw}{2\pi} \frac{(dk)}{(2\pi)^2} \{ [k_3 - k_2 + 2k_3 D^{-1}] + [k_3 - k_2 + 2k_3 D'^{-1}] \}$$
(42)

Na equação (42), o primeiro colchete vem dos modos TE da função de Green e o segundo colchete da parte TM, os primeiros termos em cada colchete que, não fazem referencia a distancia, podem ser vistos como a mudança na energia por unidade de volume do sistema. Estes termos representam a energia eletromagnética necessária para substituir o meio 2 pelo meio 3 o termo restante , que depende da distancia, é à força de Casimir[`1]. Realizando uma rotação complexa na frequência:

$$w \to i\varsigma$$
 (43)

 $k^2 = K^2 + \varepsilon \varsigma^2 \tag{44}$

A partir da rotação proposta em (44),

$$F = -\frac{1}{8\pi^2} \int_0^\infty d\zeta \int_0^\infty 2k_3 \left(D^{-1} + D^{-1'} \right) dk^2$$
(45)

Blucher

Em particular, se o meio intermediário é o vácuo $\epsilon_{3=1} e \epsilon_2 = \epsilon_1 = \infty e k_1 = k_2 = 0$ recupera se a força de Casimir para duas placas condutoras paralelas separadas por uma distancia d conforme expressão (26). De forma geral, se o meio intermediário não é o vácuo,

$$F = -\frac{1}{8\pi^2} \int_0^\infty d\zeta \int_{\zeta^2 \varepsilon}^\infty \frac{4k^2}{e^{2kd} - 1} dk^2$$
 (46)

$$F = -\frac{\pi^2}{240\sqrt{\varepsilon}} \frac{1}{d^4} \tag{47}$$

A equação (47) é a generalização do resultado encontrado em (26) imersa entre meios dielétricos. [7,10,11]

2.4 Influência dos Plasmons no efeito Casimir

Uma onda evanescente que percorre uma superfície com um comprimento de onda específico é chamada plasmon (ver figura 3). A energia de ponto zero a uma distância d da superfície é:

$$E(d) = \sum_{n} \frac{\hbar w_{na}}{2} + \sum_{n} \frac{\hbar w_{nb}}{2}$$
 (48)
Onde os índices (a) e (b) são os dois modos de
vibração na superfície na equação (48)

Figura 3: Plasmon se propagando em uma superfície metálica. Na figura o fóton incidente e refletido. Fonte: referencia [8]

$$E(d) = \frac{\hbar L^2}{4\pi} \int_0^\infty \left[\sum_N w_{NA}(k) + \sum_N w_{NB}(k) \right] k dk \quad (49)$$

De acordo com Bordag. Et.al [9]:, a energia de ponto zero E_0 , Para o dielétrico tem uma contribuição da energia do fóton incidente e dos plasmons de superfície[9]:

$$E_0 = E_{Plasmon} + E_{F\delta ton} \tag{50}$$

3. Resultados e discussão

Foram discutidas a quantização do campo eletromagnético no gauge de Coulomb e o efeito da radiação no estado do vácuo sobre uma cavidade em forma de paralelepípedo cuja uma das dimensões é muito pequena comparada a área da secção

transversal , isto é o efeito Casimir.com base no modelo de Llfishitz[7]:, foi feito o cálculo da energia de ponto zero para uma cavidade imersa em um meio dielétrico e encontrada a força a uma distancia **d** como foi feito para o vácuo e , os resultados são convergentes com a teoria de Casimir como um caso limite conforme explicitado na secção 2.3,finalmente , verificamos os efeitos das vibrações de superfície (plasmons) sobre uma cavidade imersa entre meios dielétricos .através dessas análises, foram verificados os efeitos dos plasmons no efeito Casimir em dielétricos.

4. Agradecimentos

Os autores agradecem a CAPES pelo apoio financeiro.

5. Referências

[1] CASIMIR, H. B. G 1948 Proc. K. In: Ned. Akad. Wet. B. p. 793.

[2] VAN KAMPEN, N. G.; NIJBOER, B. R. A.; SCHRAM, K. On the macroscopic theory of van der Waals forces. **Physics letters A**, v. 26, n. 7, p. 307-308, 1968.

[3]MILONNI, P. W. Casimir forces without the vacuum radiation field. **Physical Review A**, v. 25, n. 3, p. 1315, 1982.

. [4]LANDAU, Lev Davidovich et al. Electrodynamics

of continuous media. Elsevier, 1984.

[5]GREINER, Walter. **Quantum electrodynamics of strong fields**. Springer Berlin Heidelberg, 1985.

[6]SCHWINGER, Julian. On gauge invariance and vacuum polarization. **Physical Review**, v. 82, n. 5, p. 664, 1951.

[7] LIFSHITZ, E. M. The theory of molecular attractive forces between solids. 1956.

[8 DIONNE, Jennifer A. Viewpoint: Mirror, Mirror. **Physics**, v. 5, p. 38, 2012.

[9] BORDAG, Michael. The Casimir effect for thin plasma sheets and the role of the surface plasmons. **Journal of Physics A: Mathematical and General**, v. 39, n. 21, p. 6173, 2006.

[10] SCHWINGER, Julian; DERAAD, Lester L.; MILTON, Kimball A. Casimir effect in dielectrics. **Annals of Physics**, v. 115, n. 1, p. 1-23, 1978.

[11]CHEN, F. et al. Control of the Casimir force by the modification of dielectric properties with light. **Physical review B**, v. 76, n. 3, p. 035338, 2007.

Blucher Proceedings VI Encontro Científico de Física Aplicada

Blucher