Blucher

DESGASTE POR DESLIZAMENTO A TEMPERATURA AMBIENTE E A 500 °C DE UMA LIGA FUNDIDA DE Co29Cr20Fe

Sacramento, A.B. do1; Falqueto, L. E.1; Butkus, D. J.2; Bozzi, A. C.1; Scandian, C.1

1 Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal do Espírito Santo, Vitória, ES, Brasil 2 Vallourec Tubos do Brasil S.A., Belo Horizonte, MG, Brasil

Resumo

Ligas de cobalto são utilizadas em diversas aplicações industriais devido, principalmente, as suas boas propriedades em temperaturas elevadas. Uma das aplicações é em guias de laminação a quente utilizadas no processo Mannesmann. Em busca de compreender o desgaste e aumentar a vida útil deste componente do processo de fabricação de tubos sem costura com alto teor de cromo, foram realizados ensaios de desgaste por deslizamento em temperatura ambiente e a 500 °C na configuração pino-disco, sem lubrificação, variando-se a carga normal. Posteriormente foram avaliados as taxas de desgaste através de perfilometria 3D e os micromecanismos de desgaste com o aumento da carga e da temperatura, apresentando transferência e adesão de material do pino nos ensaios a 500 °C.

Palavras chaves: ligas de cobalto, desgaste por deslizamento, temperatura.

1. Introdução

Ligas de cobalto são utilizadas, principalmente, em aplicações nas quais são necessárias boas propriedades mecânicas em temperaturas elevadas [1,2]. Um exemplo de sua aplicação na indústria é na fabricação de guias de laminação utilizadas na produção de tubos sem costura de alto cromo para a indústria do petróleo. Estes tubos são fabricados pelo processo Mannesmann no qual a temperatura de laminação é maior que 1000 °C.

Essas guias de ligas de cobalto, apesar de manter boas propriedades mecânicas em temperaturas elevadas, possuem uma vida útil baixa devido ao desgaste severo, levando a duas consequências: a primeira é a possibilidade das guias desgastadas no processo causarem defeitos superficiais nos tubos forçando o descarte do mesmo; a segunda é o custo elevado devido à indisponibilidade do sistema causada pelas paradas de produção para a troca das guias.

Nas guias desgastadas é possível observar a ocorrência de escoamento plástico, transferência e adesão generalizada de material do tubo para a guia, conhecido como *galling* [3,4].

O objetivo deste trabalho foi comparar o comportamento tribológico do material utilizado em guias de laminação a quente em diferentes condições de temperatura e carregamento. Isso foi realizado através do volume de material removido, que é diretamente proporcional à carga aplicada e inversamente proporcional à dureza do material, segundo a equação de Archard [3], descrita a seguir:

$$Q = \frac{kW}{H}$$
(1)

Blucher

Na qual Q é o volume desgastado, k é o coeficiente de desgaste adimensional, W é a carga aplicada no ensaio e H é a dureza do material.

2. Materiais e métodos

2.1 Materiais

Utilizou-se como contra-corpo um pino de aço inoxidável supermartensítico 13%Cr, cuja composição encontra-se na Tabela 1. E como corpo utilizou-se um disco de uma liga de cobalto fundida com composição similar à liga Alloy 250 [5], cuja composição é apresentada na Tabela 2.

Tabela 1 - Composição do material dos pinos fornecida pelo fabricante.

Elemento	Composição (% em peso)
Fe	Bal.
Cr	13
С	≤ 0,02
Ni	8
Мо	2

Tabela 2 - Composição do material dos discos obtida através de espectrofotometria de absorção atômica.

Elemento	Composição (% em peso)
Co	47,72
Cr	29,83
Fe	19,09
С	0,22
W	0,18
Mo	0,33
Si	0,96

Além disso, foi realizada a análise de fases por difração de raios X.

2.2 Preparação das amostras

Os discos foram recebidos com a superfície retificada. Os pinos foram ser lixados antes dos ensaios. Para isso utilizou-se a seguinte sequência de lixas: #320; #500; #800.

Após a preparação da superfície as amostras passaram por um banho ultrassônico em acetona e álcool, por 5 minutos cada.

2.3 Ensaios tribológicos

Foram realizados ensaios de desgaste por deslizamento na configuração pino-disco, sem lubrificação, com diferentes cargas normais (7,3; 15,2; 23,0; e 29,9 N) e em duas diferentes temperaturas: ambiente e a 500 °C. A velocidade de deslizamento foi de 0,2 m/s e o raio da trilha de desgaste foi de 28 mm. Para os ensaios em temperatura elevada foram realizados duas réplicas para cada condição e nos ensaios a temperatura ambiente, apenas uma. O equipamento utilizado nos ensaios foi o tribômetro Phoenix PLINT TE67.

2.4 Caracterização do desgaste

Para caracterização da superfície de desgaste e medição do volume desgastado dos discos foi utilizado o analisador tridimensional de superfície (Talysurf CLI 1000, da Taylor Hobson).

O microscópio estereoscópico e o microscópio eletrônico de varredura (MEV) foram utilizados para observação dos mecanismos de desgaste.

3. Resultados e discussão

A Figura 1 apresenta os resultados da difração de raios X do material do disco como recebido, onde se observa a presença de uma estrutura CFC.

Figura 1 - Difratograma de difração de Raios X do material do disco como recebido.

Os resultados de volume desgastado dos discos são mostrados na Figura 2. Observa-se, em todas as condições de carga normal, que os ensaios em elevada temperatura apresentaram um maior volume removido. Isto ocorreu porque em temperatura elevada há uma diminuição na dureza do material.

Blucher Proceedings V Workshop of Applied Crystallography to Materials Science and Engineering

Blucher

Figura 2 - Gráfico do volume desgastado (mm³) dos discos em função da carga normal (N) aplicada para os ensaios a temperatura ambiente e a 500 °C.

Analisando-se a variação do volume desgastado em função da carga normal aplicada temos que o desgaste aumentou com o aumento da carga para os ensaios a temperatura ambiente.

Na condição de temperatura elevada, o volume desgastado sofreu influência da transferência de material do pino. Para as cargas de 7,3 N e 15,2 N é possível observar uma grande quantidade de material transferido ao longo da trilha de desgaste. Na carga de 23,0 N essa quantidade diminui. Na carga de 29,9 N, a quantidade de material aderido a pista aumentou, quando comparado com a carga anterior, conforme pode ser observado na Figura 3.

Figura 3 - Micrografias obtidas através de microscópio estereoscópico das trilhas de desgaste para ensaios na temperatura de 500 °C. Em (a) carga de 7,3 N; (b) carga de 15,2 N; (c) carga de 23,0 N; e (d) carga de 29,9 N.

c)

d)

A Figura 4 apresenta micrografias das trilhas de desgaste obtidas através de MEV para ensaios em temperatura elevada. Em (a), uma imagem obtida através de elétrons retroespalhados, permite observar a presença de materiais distintos na trilha de desgaste, indicando uma possível transferência de material do

pino para o disco, como citado anteriormente. Em (b) fica evidente a presença de grande quantidade de deformação plástica na pista de desgaste. Essa deformação plástica abundante em conjunto com a transferência e a adesão generalizada de material do pino indicam a presença do *galling*, um tipo de desgaste por deslizamento severo [4].

Figura 4 - Micrografías da pista de desgaste de ensaios realizados a 500 °C obtidas através de MEV. Em (a) uma imagem obtida com elétrons retroespalhados de um ensaio utilizando carga normal de 23,0 N; e em (b) uma imagem obtida com elétrons secundários de um ensaio com carga normal de 15,2 N a 500 °C.

A Figura 5 apresenta micrografias das trilhas de desgaste de ensaios realizados a temperatura ambiente obtidas através de MEV. Em (a) observa-se a presença de sulcos, indicando que houve remoção de material e deformação plástica. Pode ser notado, quando compara-se a imagem 5b com a imagem 5a, a diferença da intensidade de desgaste sofrida pelo disco com o aumento de carga, o que pode explicar o aumento do volume removido com o aumento da carga normal aplicada para essa condição.

Outra diferença observada, agora em relação ao desgaste a 500 °C, é que não há presença de material

Blucher

transferido ao longo da trilha de desgaste. Isso indica que o *galling*, neste caso, ocorreu apenas para temperaturas elevadas.

Figura 5 - Micrografias da trilha de desgaste de ensaios realizados a temperatura ambiente obtidas através de MEV. Em (a) um ensaio realizado com carga normal de 7,3 N; e em (b) um ensaio com carga normal de 23,0 N.

3. Conclusões

Nos ensaios a temperatura de 500 °C observou-se deformação plástica em conjunto com a transferência e adesão generalizada de material do material do pino para o disco, caracterizando o *galling*. O mesmo não foi observado para os ensaios em temperatura ambiente.

Nos ensaios a temperatura ambiente, observou-se uma tendência de aumento do volume desgastado com o aumento da carga normal aplicada.

Nos ensaios a temperatura elevada, o volume desgastado aumentou com as três primeiras cargas aplicadas (7,3; 23,0; e 29,9 N) e diminuiu na maior carga aplicada (29,9 N).

Os ensaios em temperatura elevada apresentaram maior desgaste quando comparados aos ensaios em temperatura ambiente.

4. Agradecimentos

Os autores agradecem à Vallourec pelo fornecimento das amostras, ao laboratório TRICORRMAT/UFES onde os ensaios foram realizados, ao PRH-29 pelo apoio financeiro e a todos que colaboraram de alguma forma para a conclusão deste trabalho.

5. Referências

[1] ASM International, Specialty Handbook – Heat-Resistant Material, USA, 1997.

[2] ASM International, Specialty Handbook Nickel, Cobalt and their Alloys, USA, 1^a edição, 2000.

[3] HUTCHINGS, I. M. Tribology: Friction and Wear of Engineering Materials. Ed. Edward Arnold, London, 1992.

[4] MARKOV, D., KELLY, D., Mechanisms of adhesioninitiated catastrophic wear: pure sliding, **Wear**, vol. 239, pg 189-210, 2000.

[5] DEAL A. et.al. Tensile property investigation of cast and wrought Co-Cr-Fe. **Microscopy and Microanalysis**, Vol. 13, 2007.