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Abstract

A binary gaseous mixture with reversible reaction of type A+A 
 B+B is studied
with Boltzmann equation, assuming hard spheres cross sections for elastic colli-
sions and step model for reactive interactions. The Chapman-Enskog method is
used to obtain the solution of the Boltzmann equation in a chemical regime for
which reactive interactions are of the same order as the elastic one, i.e. in the
system is closed to the final stage of a chemical reaction where the affinity is con-
sidered to be a small quantity and the system tends to the chemical equilibrium.
The internal degrees of freedom of the particles of the gas are not taken into ac-
count. The aim of this paper is to evaluate the approximation second of the forward
reaction rate coefficient and global reaction rate. It was verified the reaction heat
changes the reaction rate and these changes are great for slow activation energy..

1 Introduction
The influence of chemical reactions on
the reaction rate in gas mixtures was first
analyzed by Prigogine and co-works [1]
using a kinetic theory based on the Boltz-
mann equation. Since then, several au-
thors have studied this problem as Present
[2] and Ross and Mazur [3]. The theoret-
ical treatment of most papers involves the
Chapman-Enskog method [1, 3], [4, 5].
For the reactions of the type A + A 

B+B, which is the so-called case of sym-
metric reactions [6, 7], the majority of
the works is concentrated on the study
of the rate of reaction an its relationship

with the Arrhenius formula. The devia-
tions are more relevant for reactions with
activation energy in the high altitude at-
mosphere, where the elastic collisions are
less frequent. In the Boltzmann equation
the chemical reactions are related to in-
elastic collisions. The value of the re-
action heat distort the Maxwellian distri-
bution function, for large values the ef-
fect becomes more important. The cross
sections determining the reactive colli-
sion term can be divided into two types,
namely with and without activation en-
ergy [7, 8]. The aim of this work is to
analyze the influence of the reaction heat
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for a binary mixture with a reversible re-
action of type A+A 
 B+B near chem-
ical equilibrium. This kind of reaction
is known as fast reactions, because the
reactive processes are of the same or-
der as the elastic ones. The Chapman-
Enskog method is used to obtain the solu-
tion of the Boltzmann equation in a chem-
ical regime for which the reactive inter-
actions are of the same order the elastic
collisions, i.e. for processes close to the
beginning of the reaction where the affin-
ity tends to zero. The resulting integral
equation is solved with the expansion of
the distribution function in Sonine poly-
nomials up to first-order terms. The cal-
culations have been performed by assum-
ing differential hard-sphere cross sections
for elastic collisions and step model for
reactives interactions.

2 Boltzmann Equation

We consider a binary mixture of ideal
gases whose constituents denoted by A
and B, have binding energies εα = A,B
and equal molecular mass m. There ex-
ist two kinds of collisions between the
molecules of the gas: the elastic one
which refers to non reactive interactions
and the one which takes into account the
reaction. The gas molecules undergo in-
elastic collisions with reversible reactions
of the type

A+A 
 B+B. (1)

The conservation laws of linear mo-
mentum and total energy for a reactive
collision are given by

mcA +mcA1 = mcB +mcB1, (2)

εA +
1
2

mc2
A + εA +

1
2

mc2
A1

= (3)

εB +
1
2

mc2
B + εB +

1
2

mc2
B1
,

where (cA, cA1) and (cB, cB1) are the
velocities of reactants and products, re-
spectively, of the forward reaction. The
subindex 1 is used to distinguish two
identical molecules that participate in the
collision. The conservation laws for the
nonreactive collisions have the same form
as the above equations.

We denote by gA = cA1−cA and gB =
cB1 − cB the assymptotic relative veloci-
ties of the reactants and products of the
forward reaction, respectively, and write
the conservation law of total energy (3) as

1
4

mg2
A =

1
4

mg2
B +E, E = 2(εB− εA),

(4)
where E, the difference between the bind-
ing energies of products and reactants is
connected with the reaction heat.

In the phase space defined by posi-
tions and velocities of particles, the state
of the mixture is defined in terms of the
set of one-particle distribution functions

fα = f (x,cα , t) (α = A,B), (5)

such that fαdxdcα gives at time t the
number of molecules of type α in the vol-
ume element dxdcα around the position x
and the velocity cα . The evolution of te
one-particle distribution fα in the phase
space is assumed to satisfy the Boltzmann
equation which in the absence of external
forces is written as

∂ fα

∂ t
+ cα

i
∂ fα

∂xi
= QE

α +QR
α , (α = A,B)

(6)
where
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QE
α =

B

∑
β=A

∫ [
f ′α f ′

β
− fα fβ

]
dΓαβ , (7)

QR
α =

∫ [
fγ fγ1− fα fα1

]
σ
?
αdΓ

?
α , (8)

where

dΓαβ = d2(gβα .kβα)dkβαdcβ (9)

dΓ
?
α = σ

?
α(gα .kα)dkαdcα1

with the indices α and β (α 6= β ) repre-
senting one of the two constituents A and
B, accounts for the source and sink contri-
butions due to inelastic interactions with
the chemical reactions. The quantity σ?

α

denote reactive differential cross section,
kα and dkα denote the unit collision vec-
tor and the element of solid angle for elas-
tic collisions, whereas kα and dkα repre-
sent the corresponding quantities or reac-
tive interactions. The parameter d denotes
the diameter of a particle. Due to the
principle of microscopic reversibility [9],
a definite relationship exists between the
forward cross section σ?

A and that for the
reverse reaction σ?

B. By using this princi-
ple, the transformation law bettween the
elements for the reactive and forward col-
lisions in the velocity space is given by

(gA.kA)σ
?
AdcAdcA1 = (gB.kB)σ

?
BdcBdcB1.

(10)

3 Chapman-Enskog Method
The non-equilibrium effect are contained
in the one-particle distribution functions,
fα , α = A,B and it is characterized af-
ter solving the appropriate reactive Boltz-
mann equation (6). This can be achieved

in the framework of the Chapman-Enskog
method [1, 2], once step model for the re-
active cross sections is assumed,

σ
?
α = 0, εα < ε

? or d2
γα > ε

?

(11)
In equation (11) γα is the relative

translational energy of constituent α and
ε? is the activation energies of the reac-
tion in units of the thermal energy of the
mixture, kT , T is the temperature of the
mixture and k being the Boltzmann con-
stant.

If we multiply the Boltzmann equa-
tion (6) by arbitrary function ψα =
1,ψα = mcα

i and ψα = mc2
α/2 + εα ,

respectively and integrate the resulting
equations over all values of cα , we get the
equations

∂nα

∂ t
+

∂

∂ t
(nαvi +nαuα

i ) = (12)

∫
(QE

α +QR
α)dcα = τα ,

∂

∂ t
(mnα)vα

i +
∂

∂x j
[pα

i j +mnα(uα
i v j (13)

+uα
j vi + viv j)] =

∫
mcα

i (Q
E
α +QR

α)dcα ,

∂

∂ t

[
3
2

nαkT +nαεα +mnα

(
uα

i vi +
1
2

v2
)]

+

(14)
∂

∂xi

{
qα

i + pα
i jv j +nαεαuα

i +

1
2

mnαv2uα
i +

[
3
2

nαkT +nαεα+

mnα

(
uα

i vi +
1
2

v2
)]

vi

}
=

=
∫ (m

2
c2

α

)
(QE

α +QR
α)dcα ,
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where nα is particle densities, vα
i is the

velocity components, T is the tempera-
ture of the mixture, uα

i is the diffusion ve-
locity, pα

i j is pressure tensor, qα
i is the heat

flux for each constituent α and τα denotes
the rate of reaction due to the chemical re-
action. The quantities above are defined
in terms of the distribution function [5].

The distribution function contains
all the information about the non-
equilibrium effects induced by the chem-
ical reaction. The solution of the Boltz-
mann equation (6) in a chemical regime
for which the reaction process is close to
its final stage (fast process) to this prob-
lem is based on the Chapman-Enskog
method and Sonine polynomial approxi-
mation to the coefficients of the distribu-
tion functions [10].

For the solution of the Boltzmann
equation (6) it is convenient to write fα in
terms of Sonine polynomials and retain,
at least, the expansion up to the first-order
term,

fα = f M
α

[
1+aα

0 +aα
1

(
3
2
− mξ 2

α

2kT

)]
,

(15)

f M
α = nα

( m
2πkT

)3/2
exp
(
−mξ 2

α

2kT

)
where aα

1 is scalar coefficient to be deter-
mined and aα

0 = 0, due to particle num-
ber densities conservation of the system.
The expansion adopted is capable to re-
produce an appreciate effect of the reac-
tion heat and reactive cross section on the
distribution function.

4 Results

The rate of reaction of the mixture is de-
fined by

τα =
∫ [

fγ fγ1− fα fα1

]
dΓ

?
αdcα , (16)

When the reaction is forward (A +
A→ B+B), the rate of reaction is

τA = n2
B[k

(0)
r +k(1)r ]−n2

A[k
(0)
f +k(1)f ] (17)

The production terms k(0)f , k(1)f , k(0)r

and k(1)r of the particle number density
can be calculated by inserting the distri-
bution (16) into its definition (17) and by
integration over all velocities cα . The
terms k(0)f and k(0)r are well known in the
literature [8].
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Figure 1: Dimensionless Forward Reaction Rate Coefficient as a function of the

activation energy ε? with exothermic reaction and endothermic reaction

In figures 1 and 2 are plotted respec-
tively, the dimensionless forward reaction
rate coefficient k?f and rate of reaction is
defined by

k?f =
k(1)f

4dr2
√

πkT/m(ε?+1)e−ε?
, (18)
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τ
?
A =

τ
(1)
A

4dr2
√

πkT/m(ε?+1)e−ε?
(19)

as a function of the ε?, considering the di-
ameter dr = d. Two cases are analyzed,
one for endothermic reaction and other
for exothermic reaction.
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Figure 2: Dimensionless Rate of Reaction as a function of the activation energy ε?

with endothermic reaction and exothermic reaction

From figure 1 we can conclude that
the effect on the reaction rate is larger
exothermic reactions. Besides, the effect
on the reaction rate is more evident in re-
gions of low activation energy. As it was
pointed out by Prigogine and Mahieu [1]
the reaction heat modifies the distribution
function.

On the other hand, in the figures 1 and
2, when the activation energy increase the
rate of reaction tends to zero, the reac-
tive cross section decreases and therefore
it is less suitable to happen a collision that
causes a chemical reaction.

The rate of reaction is positive for
endothermic reactions and negative for

exothermic reactions. Therefore, the re-
action of heat modifies the distribution
function.

5 Conclusions
In this paper, the second approximation
to the distribution functions were deter-
mined from the system of Boltzmann
equations for the last stage of a chemical
reaction- known as fast reaction- where
the affinity is considered as a small quan-
tity in comparison with the thermal en-
ergy of the mixture. The reaction heat
modifies the reaction rate, i. e., the pro-
duction term τ−A of the particle number
density of the constituent A are negative
for exothermic reactions and positive for
endothermic ones. It is shown the reac-
tion to occur only when the relative trans-
lational energy is greater than the activa-
tion energy.
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