
Blucher Proceedings
VII Encontro Cientı́fico de Fı́sica Aplicada Blucher

Supernovae Observational Cosmology using GPU High
Performance Computing

Colistete Jr., R.
Departamento de Quı́mica e Fı́sica, Universidade Federal do Espı́rito Santo, Alegre, ES, Brazil

roberto.colistete@ufes.br

Giostri, R.
Departamento de Quı́mica e Fı́sica, Universidade Federal do Espı́rito Santo, Alegre, ES, Brazil

ramon.campos@ufes.br

Abstract

We performed computing calculations of SNe Ia (type Ia supernova) in observational cosmology using
CPU (Central Processing Unit) and GPU/CUDA (Graphics Processing Unit/Compute Unified Device
Architecture) in 7 different programming methods : CUDA called from C/C++, Python with CUDA (Py-
CUDA), Wolfram Mathematica with CUDA, C/C++, pure Python, Python with NumPy and Wolfram
Mathematica calculated in CPU. With CUDA, we obtained speedup of approximately 3 to 7 hundred
times with respect to CPU when performing calculations of the SNe Ia distance modulus (µ0). So
we confirmed that CUDA (Compute Unified Device Architecture) is an excellent choice for GPU High
Performance Computing (HPC) architecture applied to observational cosmology calculations.

Keywords: observational cosmology, high performance computing, CUDA

1 Introduction

Advances in computational techniques have al-
lowed to explore issues related to science and
technology that were previously unimaginable,
one of them is the development of High Perfor-
mance Computing (HPC) based on parallel com-
puting using GPU (Graphics Processing Unit).

We targeted the problem of calculating the dis-
tance modulus (µ0) for type Ia supernovae (SNe
Ia), used in observational cosmology to estimate
the theoretical cosmological models. Those mod-
els can sometimes have a parameter space with
many dimensions and Bayesian statistics need a
large number of points in the parameter space to
marginalize parameters and compare models.

For the case of flat standard model of cosmol-
ogy [1] there are N = 3 free parameters. Un-
der these conditions the calculation is performed
about 103 times for each supernova. But for sup-
ported models with N dimensions, it can vary be-
tween 10N to 102N . Also worth remembering is
that today the supernovae catalogs are of the or-
der of a thousand supernovae and the estimate is
that with new experiments it will have hundreds of

thousands of SNe Ia in a few years [2]. Given the
values shown we have a very intensive computa-
tional problem, so those SNe Ia calculations are a
good application for HPC with GPU.

In this context, we performed the calculation
of the distance modulus (µ0) on CPU with no
parallelism by using the programming languages
C/C++, pure Python, Python with Numpy and
Wolfram Mathematica [3]. Then we used GPU
and CUDA (Compute Unified Device Architec-
ture) [4], we calculated µ0 with CUDA (called
from C/C++), PyCUDA [5] (Python with CUDA)
and Wolfram Mathematica with CUDA. We com-
pared the advantages and disadvantages of these
approaches.

2 Type Ia supernova observa-
tional cosmology

A supernova is one of the possible final stages
of a star, there are several types of supernovae
[6] and we give particular attention to the type
Ia supernovae (SNe Ia). The SNe Ia are stan-
dardizable candles and this feature was essential

1

mailto:roberto.colistete@ufes.br
mailto:ramon.campos@ufes.br


Blucher Proceedings
VII Encontro Cientı́fico de Fı́sica Aplicada Blucher

to prove that the universe expands with acceler-
ation in 1998/1999 [7, 8], this pioneering work
have won the Nobel prize in 2011.

Calculation of the theoretical distance modu-
lus µ0 is a central part of SNe Ia observational
cosmology, as it is the amount statistically com-
pared with the astronomical observable:

µ0(z,Θ) = 25+5 log10

(
(1+ z)c

H0

∫ z

0

1
h(z′,Θ)

dz′
)
(1)

For flat cosmological models the changes are
in the denominator of integrand, for non flat mod-
els, more significant changes are necessary [9].

3 Performance of µ0 calcula-
tions in CPU and GPU

The calculation of the theoretical distance modu-
lus µ0 was performed on CPU and GPU using sin-
gle precision (SP) and double precision (DP). We
obtained the speedup of GPU calculations with re-
spect to C/C++ running on 1 CPU core (figures
1-2), and compared the calculation time in 7 dif-
ferent programming methods (table 1).

The configuration in terms of hardware and
software : workstation with Intel Core i7 4770K
(3.5-3.9 GHz, 8MB cache, 4 cores, 8 threads),
16GB RAM, GeForce GTX Titan (2,688 cores,
6GB GDDR5 RAM), Ubuntu 14.04.2 64 bits,
Linux kernel 3.16.0, gcc 4.8.4, Python 2.7.6,
NumPy 1.8.2, CUDA 7.0-28, PyCUDA v2015.1,
Mathematica 10.1.

Figure 1: Speedup with respect C/C++ (in 1 CPU core)
vs. dataset size (number of supernovae) in SP (single
precision)). C/C++/CUDA in blue, PyCUDA in orange.
Wolfram Mathematica 10 using CUDA is not shown be-
cause it doesn’t work in SP.

Figure 2: Speedup with respect C/C++ (in 1 CPU core)
vs. dataset size (number of supernovae) in DP (double
precision). C/C++/CUDA in blue, PyCUDA in orange,
Wolfram Mathematica 10 using CUDA in green.

Table 1: µ0 DP (double precision) calculation time in
seconds (s) for 105 SNe Ia. CUDA : C/C++/CUDA.
WMC : Wolfram Mathematica 10 using CUDA. Python
: pure Python. NumPy : Python with NumPy. WM :
Wolfram Mathematica 10 using CPU.

Method Total time (s) Kernel time (s)
CUDA 0.002941 0.002576

PyCUDA 0.002952 0.002450
WMC 0.006366 0.003632
C/C++ 0.7327 —
Python 46.13 —
NumPy 1.499 —

WM 2.634 —

In SP (single precision), C/C++/CUDA is 1-2
times faster than PyCUDA because PyCUDA has
overhead in dealing with SP data. While Wolfram
Mathematica versions 9/10 don’t calculate at all
when running kernels in SP.

In DP (double precision), PyCUDA is approx-
imately as fast as C/C++/CUDA. Both are faster
than Wolfram Mathematica with CUDA, which is
not efficient in CPU-GPU communication.

Performance wise in SP, C/C++/CUDA
speedup w.r.t. C/C++ (CPU using 1 core) is up
to 730 times. PyCUDA speedup w.r.t. C/C++ is
up 220 times, w.r.t. Python/NumPy is up to 450
times. So C/C++/CUDA is 1-2 times faster than
PyCUDA in SP.

In DP, PyCUDA is approximately as fast
as C/C++/CUDA : C/C++/CUDA speedup w.r.t.
C/C++ is up to 294 times. PyCUDA speedup w.r.t.
C/C++ is up 294 times, w.r.t. Python/NumPy is up
to 601 times. Wolfram Mathematica with CUDA
speedup w.r.t. C/C++ is up to 237, w.r.t. to Math-
ematica (using CPU) is up to 852 times.

2



Blucher Proceedings
VII Encontro Cientı́fico de Fı́sica Aplicada Blucher

4 Conclusion
The use of GPU with CUDA applied to calcula-
tions of the SNe Ia distance modulus (µ0) yields
an impressive speedup of approximately 3 to 7
hundred times with respect to CPU.

CUDA is usually called from C/C++, but there
is also PyCUDA which let us use CUDA from
Python, making HPC with GPU easier with re-
spect to C/C++ with CUDA, while being robust
and giving good performance.

Wolfram Mathematica, which has an inter-
preted and high level language, can also call
CUDA since version 8, so it was compared here.

Both PyCUDA and Wolfram Mathematica
with CUDA use interpreted and higher level pro-
gramming languagens so they are easier to pro-
gram (resulting less code and less time to de-
velop) than pure C/C++/CUDA. They also allow
metaprogramming (computer programs creating
computer programs).

So PyCUDA compares very well, being : as
fast as C/C++/CUDA in double precision; faster
and more robust than Wolfram Mathematica with
CUDA; hundreds times faster than C/C++, pure
Python, Python with NumPy, and Wolfram Math-
ematica calculated in CPU.

So we concluded that HPC with GPU/CUDA
is an excellent choice for SNe Ia observational
cosmology calculations. And PyCUDA is a very

attractive and competitive choice for CUDA pro-
gramming.

References
[1] Wang, Y., et al. Dark Energy. Weinheim,

Germany, Wiley, 2010.

[2] Weinberg, D. H., et al. Physics Reports, v.
530, Issue 2, p. 87-256, 2013.

[3] Wolfram, S. Mathematica: A System for Do-
ing Mathematics by Computer, 2nd edition.
Redwood City, Addison-Wesley, 1991.

[4] Nickolls, J., et al. ACM Queue, v. 6, n. 2, p.
40-53, March/April 2008,

[5] Klckner, A., et al. Parallel Computing, v. 38,
issue 3, p. 157-174, March 2012.

[6] Filippenko, A. V. Annu. Rev. Astron. Astro-
phys, v. 35, p. 309-355, 1997.

[7] Riess, A. G., et al. Astron. J., v. 116, p. 1009-
1038, 1998.

[8] Permutter, S., et al. Astrophys. J., v. 517, p.
565-586, 1999.

[9] Drell, P. S., et al. Astrophys. J., v. 530, p.
593-617, 2000.

3


	Introduction
	Type Ia supernova observational cosmology
	Performance of 0 calculations in CPU and GPU
	Conclusion

