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Abstract

The type Ia supernovae observational data is one of the most important in observational cosmology
nowadays. Here we present the first public version of BETOCS (BayEsian Tools for Observational
Cosmology using SNe Ia), which is a powerful and high productivity tool aimed to help the theoretical
physicist community investigate cosmological models using type Ia supernovae (SNe Ia) observational
data. BETOCS is applied to the generalized Chaplygin gas model (GCGM), traditional Chaplygin gas
model (CGM) and ΛCDM, ranging from 5 to 3 free parameters, respectively. The “gold sample” of
157 supernovae data is used. It is shown that the Chaplygin gas scenario is viable (in most cases the
ΛCDM is disfavoured) and the quartessence scenario (that unifies the description for dark matter and
dark energy) is favoured. The Hubble parameter (H0) is important and should not be fixed and it can
be estimated or marginalized with or without the Hubble Space Telescope prior.
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1 Introduction
The type Ia supernovae (SNe Ia) observational

data has forced us to discard or change the major-
ity of theoretical cosmological models supposed
to be correct until the second half of the last
decade [1, 2]. The crossing of the SNe Ia statistics
with other observational data, like the anisotropy
of the cosmic microwave background radiation
(CMBR) [3], gravitational lensing [4, 5], the X-
ray gas mass fraction of galaxy clusters [6], etc,
leads to a scenario where the matter content of
the Universe is described by an unclustered com-
ponent of negative pressure, the dark energy, and
a clustered component of zero pressure, the cold
dark matter.

There are many candidate for dark energy,
the most natural seems to be the cosmological
constant [7], since it can be connected with the
vacuum energy in quantum field theory [8], but
the small value resulting from observations for
the energy density of the cosmological constant
term yields a discrepancy of about 120 orders of

magnitude with the theoretically predicted value
[9]. Among many other possibilities, for example
there is the quintessence model with scalar fields
[10, 11].

Here we will focus on the Chaplygin gas mod-
els (CGM) [12, 13, 14, 15]. It is based on a
string inspired configuration that leads to a spe-
cific equation of state where pressure is negative
and varies with the inverse of the density [16].
This model has been generalized, giving birth to
the generalized Chaplygin gas model (GCGM),
where now the pressure varies with a power of
the inverse of the density [15]. These propos-
als have many advantages, among which we can
quote the following: in spite of presenting a nega-
tive pressure, the sound velocity is positive, what
assures stability [17]; these models can unify the
description of dark energy and dark matter, since
the fluid can clusters at small scale, remaining a
smooth component at large scales [15]; the CGM
has an interesting connection with string theory
[16]. Some criticisms have been addressed to
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the GCGM (CGM) mainly connected with its fea-
tures related to the power spectrum for the ag-
glomerated matter [18]. However, in our opinion,
this specific criticism is not conclusive, since the
introduction of baryons may alleviate the objec-
tions presented against the cosmological scenarios
based on the GCGM (GCM) [19].

The GCGM (Generalized Chaplygin Gas
Model) is defined as a perfect fluid with an equa-
tion of state given by

p =− A
ρα

, (1)

where A and α are constants. When α = 1 we re-
obtain the equation of state for the CGM (Chap-
lygin Gas Model), the traditional Chaplygin gas
model. See refs. [20, 21, 22] for more detailed
definitions of the Chaplygin gas models used in
the present work.

All free parameters for each model are consid-
ered. In the case of the GCGM there are five free
parameter: the Hubble constant H0; the equation
of state parameter α; the “sound velocity” related
parameter Ā; the density parameter for the pres-
sureless matter Ωm0; the density parameter for the
Chaplygin gas Ωc0 (or alternatively the density pa-
rameter for the curvature density of the Universe
Ωk0). For the CGM, the number of parameters re-
duce to four, since α = 1. We also consider the
ΛCDM, where the number of parameters reduce
to three: H0, Ωm0 and Ωc0 (alternatively, Ωk0).

One important point is how to perform this
statistical analysis: the final conclusions may, in
some cases, depend on the statistical framework
(Bayesian, frequentist, etc.), as well as on the pa-
rameters that are allowed to be free, and how these
parameters are constrained (through a joint prob-
ability for two parameters, minimizing the error
function or through a marginalization of all pa-
rameters excepted one, etc.). In some cases, the
different procedures adopted may lead to quite dif-
ferent conclusions on the best value for a given
set of parameters. The choice of the observational
data sample may of course be important as well.

The present work is intended to:
1. Announce the first public version of BETOCS
(BayEsian Tools for Observational Cosmology
using SNe Ia [23]), which is a powerful and
high productivity tool aimed to help the theoreti-
cal physicist community investigate cosmological
models using type Ia supernovae (SNe Ia) obser-
vational data. BETOCS is a freeware and open

source tool written in the Mathematica [24] lan-
guage. The Mathematica notebooks of BETOCS
contain documentation, source code and practical
examples with textual and graphical outputs.
2. Emphasize that fixing H0 is not acceptable,
yielding arbitrary parameter estimations and usu-
ally bad best-fittings. On the other hand, the HST
(Hubble Space Telescope) prior [25] for H0 im-
plies minor effects on all best-fittings and param-
eter estimations (as shown here comparing the ta-
bles with flat and HST priors for H0), so its use
is just a matter of choice. Nevertheless, it is rec-
ommended to use the HST prior as it is standard
when using other observational cosmological data
(X-ray gas mass fraction, etc).
3. Continue the work of refs. [20, 21, 22]
and show a very complete view and analysis of
the Chaplygin gas models (generalized and tradi-
tional) using SNe Ia. The present work specially
fixes an error on ref. [20] when calculating the
best-fittings and parameter estimations for non-
flat Universes ( Ωk0 6= 0), due to an earlier version
of BETOCS with wrong optimization code. B ut
the side-effects of this error were not critical, just
worsening some positive features.

The best-fitting parameters and the parame-
ter estimations were calculated for each case of
GCGM, CGM or ΛCDM using a correspond-
ing BETOCS (BayEsian Tools for Observational
Cosmology using SNe Ia [23]) notebook (writ-
ten in Mathematica [24] language) containing the:
definitions of the theoretical cosmological model,
reading of the observational SNe Ia data, χ2 def-
inition, Bayesian tools library, calculation of the
Bayesian PDF, global maximization of PDF, PDF
visualization in 3 dimensions (if available), PDF
visualization and analysis in 2 dimensions and fi-
nally PDF visualization in 1 dimension with pa-
rameter estimation. This article does not include
all the graphics and analyses of the BETOCS note-
books, but some of them are available on the In-
ternet site of the BETOCS project [23].

This paper is organized as follows. In sec-
tion 2 we detail the best-fitting analysis using
BETOCS, with many results presented in tables.
Section 3 explains how the parameter estimations
are made using BETOCS, such that a detailed
Bayesian analysis is performed for each indepen-
dent and dependent parameter, with the results
shown in many tables and figures. The conclu-
sions are discussed in section 4.
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GCGM k = 0, k = 0,
with k = 0 Ωm0 = 0 Ωm0 = 0.04 Ωm0 = 0 Ωm0 = 0.04

χ2
ν 1.1075 1.1094 1.1075 1.1081 1.1094 1.1096

α 7.70 2.83 7.53 7.75 2.83 3.07

H0 65.03 65.12 65.03 64.98 65.12 65.09

Ωk0 0.177 0 0.173 0.153 0 0

Ωm0 0.000 0.000 0 0.04 0 0.04

Ωc0 0.823 1.000 0.827 0.807 1 0.96

Ā 0.996 0.929 0.996 0.998 0.929 0.949

t0 13.53 13.55 13.53 13.53 13.55 13.55

q0 −0.819 −0.893 −0.822 −0.785 −0.893 −0.866

ai 0.786 0.753 0.786 0.777 0.753 0.751

Table 1: The best-fitting parameters, i.e., when χ2
ν is minimum, for each type of spatial section and matter content of the generalized

Chaplygin gas model. H0 is given in km/Mpc.s, Ā in units of c, t0 in Gy and ai in units of a0.

2 Best-fitting parameters using
BETOCS

In order to compare the theoretical results with
the observational data, the first step in this sense
is to compute the quality of the fitting through the
least squared fitting quantity χ2. In the case of flat
priors for all independent parameters of the theo-
retical cosmological model, we get

χ
2 = ∑

i

(
µo

0,i−µ t
0,i

)2

σ2
µ0,i

. (2)

In this expression, µo
0,i is the distance mod-

uli observationaly measured for each supernova
of the 157 gold SNe Ia dataset [26], µ t

0,i is the
value calculated through the theoretical cosmo-
logical model, σ2

µ0,i is the measurement error and
includes the dispersion in the distance modulus
due to the dispersion in galaxy redshift due to pe-
culiar velocities, following ref. [26]. It is useful to
define χ2

ν : χ2 divided by the number of degrees of
freedom of the observational data, i.e., the number
of SNe Ia, here 157.

As we also want to compare the fitting and es-
timation of the parameters without priors and with
the HST (Hubble Space Telescope) prior [25] for
H0, then the χ2 used for the calculations with the

HST prior is simply

χ
2 = ∑

i

(
µo

0,i−µ t
0,i

)2

σ2
µ0,i

+
(H0−72)2

82 . (3)

In tables 1 and 2 the values of the parameters
for the minimum χ2

ν (χ2 divided by the number of
SNe Ia) are given for the GCGM with five free pa-
rameters (α,H0,Ωm0,Ωc0, Ā) and for other cases
where the pressureless mater, the curvature or both
are fixed, respectively using the flat prior for H0
and the HST (Hubble Space Telescope) prior for
H0. Analogously, the same estimations are pre-
sented in tables 3 and 4 for the CGM, for up to
four free parameters (H0,Ωm0,Ωc0, Ā), and in ta-
ble 5 for the ΛCDM, for up to three free parame-
ters (H0,Ωm0,ΩΛ).

It is important to emphasize that, for each
case, all free independent parameters are con-
sidered simultaneously to obtain the minimum
of χ2

ν . So, for example assuming the GCGM,
if we ask for the best simultaneous values of
(α,H0,Ωm0,Ωc0, Ā) then the answer is given by
the first column of table 1. However, in this ex-
ample, asking for the best value of α by weighing
(marginalizing or integrating) all possible values
of (H0,Ωm0,Ωc0, Ā) yields the estimation in the
first column of table 6, whose peak of 0.59 for α

is totally different from 7.70 as best-fitting param-
eter! The parameter estimation issue is addressed
by the Bayesian statistics of the next section, not
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GCGM k = 0, k = 0,
with k = 0 Ωm0 = 0 Ωm0 = 0.04 Ωm0 = 0 Ωm0 = 0.04

χ2
ν 1.1122 1.1140 1.1122 1.1129 1.1140 1.1143

α 7.73 2.96 7.27 7.57 2.96 3.22

H0 65.11 65.20 65.11 65.06 65.20 65.17

Ωk0 0.170 0 0.162 0.143 0 0

Ωm0 0.000 0.000 0 0.04 0 0.04

Ωc0 0.830 1.000 0.838 0.817 1 0.96

Ā 0.996 0.935 0.995 0.997 0.935 0.954

t0 13.53 13.54 13.52 13.53 13.54 13.54

q0 −0.826 −0.902 −0.832 −0.794 −0.902 −0.874

ai 0.785 0.754 0.784 0.776 0.754 0.752

Table 2: The best-fitting parameters, i.e., when χ2
ν is minimum, for each type of spatial section and matter content of the generalized

Chaplygin gas model using the HST prior. H0 is given in km/Mpc.s, Ā in units of c, t0 in Gy and ai in units of a0.

CGM k = 0, k = 0,
with k = 0 Ωm0 = 0 Ωm0 = 0.04 Ωm0 = 0 Ωm0 = 0.04

χ2
ν 1.1119 1.1141 1.1119 1.1121 1.1141 1.1147

H0 64.96 64.73 64.96 64.95 64.73 64.70

Ωk0 −0.149 0 −0.149 −0.160 0 0

Ωm0 0.000 0.000 0 0.04 0 0.04

Ωc0 1.149 1.000 1.149 1.120 1 0.96

Ā 0.806 0.811 0.806 0.825 0.811 0.834

t0 13.91 14.01 13.91 13.92 14.01 14.03

q0 −0.815 −0.717 −0.815 −0.807 −0.717 −0.701

ai 0.702 0.699 0.702 0.699 0.699 0.695

Table 3: The best-fitting parameters, i.e., when χ2
ν is minimum, for each type of spatial section and matter content of the traditional

Chaplygin gas model. H0 is given in km/Mpc.s, Ā in units of c, t0 in Gy and ai in units of a0.

by best-fitting in n-dimensional parameter space.
Each column of these best-fitting tables was

calculated using a corresponding BETOCS [23]
notebook. The minimization of χ2

ν is obtained
in the following way: the initial global minimum
taken from the n-dimensional discrete parameter
space (see next section) is used as initial value to
search for the local minimum of χ2

ν by using the
function FindMinimum of the software Mathemat-
ica [24].

Note that the minimum values for χ2 using the
“gold sample” are worse (i.e., higher, from 1.11

to 1.20) than the corresponding ones (between
0.74 and 0.77) using the restricted sample of 26
supernovae [21, 22] (which have excellent qual-
ity). While the minima for χ2 are always slightly
higher when the HST prior is used (because the
HST prior peak is far from the best-fitting H0),
yielding best-fitting parameter values with minor
changes. Other important results: the parameter
α is usually much bigger than 1, Ā is often near
unity, Ωk0 is not far from 0 suggesting a flat spatial
section (except for ΛCDM), Ωm0 being null recov-
ers the quartessence [13, 27] scenario (except for
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CGM k = 0, k = 0,
with k = 0 Ωm0 = 0 Ωm0 = 0.04 Ωm0 = 0 Ωm0 = 0.04

χ2
ν 1.1167 1.1193 1.1167 1.1170 1.1193 1.1200

H0 65.04 64.80 65.04 65.02 64.80 64.76

Ωk0 −0.158 0 −0.158 −0.170 0 0

Ωm0 0.000 0.000 0 0.04 0 0.04

Ωc0 1.158 1.000 1.158 1.130 1 0.96

Ā 0.808 0.813 0.808 0.827 0.813 0.836

t0 13.91 14.02 13.91 13.93 14.02 14.04

q0 −0.824 −0.720 −0.824 −0.816 −0.720 −0.703

ai 0.701 0.697 0.701 0.698 0.697 0.693

Table 4: The best-fitting parameters, i.e., when χ2
ν is minimum, for each type of spatial section and matter content of the traditional

Chaplygin gas model using the HST prior. H0 is given in km/Mpc.s, Ā in units of c, t0 in Gy and ai in units of a0.

ΛCDM ΛCDM: ΛCDM: ΛCDM:
k = 0 Ωm0 = 0 Ωm0 = 0.04

H0 Prior f lat HST f lat HST f lat HST f lat HST

χ2
ν 1.1149 1.1199 1.1279 1.1337 1.2002 1.2068 1.1882 1.1946

H0 64.85 64.93 64.32 64.39 63.78 63.86 63.90 63.98

Ωk0 −0.437 −0.447 0 0 0.803 0.795 0.692 0.684

Ωm0 0.459 0.460 0.309 0.306 0 0 0.04 0.04

ΩΛ 0.978 0.987 0.691 0.694 0.197 0.205 0.268 0.276

t0 14.83 14.85 14.87 14.88 16.85 16.88 16.10 16.13

q0 −0.749 −0.757 −0.537 −0.540 −0.197 −0.205 −0.248 −0.256

ai 0.617 0.615 0.607 0.605 0 0 0.421 0.417

Table 5: The best-fitting parameters, i.e., when χ2
ν is minimum, for each type of spatial section and matter content of the ΛCDM

model using flat and HST priors. H0 is given in km/Mpc.s, t0 in Gy and ai in units of a0.

ΛCDM), q0 and ai point to an accelerating Uni-
verse today with an age t0 of approximately 14
Gy. But these results must be compared with a
more complete statistical analysis to be presented
below.

3 Parameter estimations using
BETOCS

Following the previous works [20, 21, 22], the
Bayesian statistical analysis is employed here in-
stead of the more usual frequentist (or standard or

traditional) statistics. The Bayesian statistics em-
phasizes considering only the (observational) data
you have, rather than simulating an infinite space
of data, which is an advantage. On the other hand,
the Bayesian marginalization process is computa-
tionally time-consuming if the number of param-
eters of the theoretical model is large. For the
case here, with a maximum of five free parame-
ters and low number of data points (157 SNe Ia),
the Bayesian approach is better suited than the fre-
quentist statistics. See Refs. [28, 29, 30, 31] for
discussions about the frequentist versus Bayesian
statistics and some applications in physics.
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GCGM k = 0, k = 0,
with k = 0 Ωm0 = 0 Ωm0 = 0.04 Ωm0 = 0 Ωm0 = 0.04

α −0.59+5.27
−0.41 1.18+4.22

−2.18 0.90+5.52
−1.83 0.64+5.55

−1.64 1.57+5.09
−1.95 1.52+4.76

−1.97

H0 64.68+1.73
−1.69 64.52+1.64

−1.57 64.73+1.74
−1.72 64.70+1.75

−1.72 64.93+1.55
−1.66 64.84+1.54

−1.62

Ωk0 −0.251+0.605
−0.694 0 0.065+0.509

−0.833 0.025+0.496
−0.827 0 0

Ωm0 0.000+0.499
−0.000 0.000+0.301

−0.000 0 0.04 0 0.04

Ωc0 1.012+0.667
−0.489 1.000+0.000

−0.301 0.935+0.833
−0.509 0.935+0.827

−0.496 1 0.96

Ā 1.000+0.000
−0.348 0.989+0.011

−0.245 0.987+0.012
−0.388 0.988+0.012

−0.382 0.987+0.013
−0.293 0.987+0.012

−0.278

t0 14.42+2.51
−1.77 13.74+1.76

−0.96 13.77+2.39
−1.08 13.77+2.82

−1.06 13.56+1.34
−0.83 13.60+1.40

−0.76

q0 −0.730+0.352
−0.328 −0.717+0.305

−0.247 −0.750+0.392
−0.399 −0.750+0.399

−0.372 −0.928+0.394
−0.114 −0.886+0.369

−0.106

ai 0.626+0.184
−0.123 0.740+0.073

−0.179 0.735+0.121
−0.262 0.740+0.108

−0.294 0.760+0.069
−0.147 0.752+0.072

−0.151

p(α > 0) 66.74% 87.82% 87.92% 85.40% 96.46% 95.61%

p(α = 1) 40.81% 91.09% 95.94% 85.17% 70.44% 73.19%

p(Ωk0 < 0) 79.05% − 49.21% 55.18% − −

p(Ωk0 = 0) 45.70% − 82.48% 93.06% − −

p(Ā 6= 1) 0% 59.15% 100% 100% 100% 100%

p(q0 < 0) 5.14σ 7.07σ 100% 100% 100% 100%

p(ai < 1) 5.26σ 7.49σ 100% 5.56σ 100% 100%

Table 6: The estimated parameters for the generalized Chaplygin gas model (GCGM) and some specific cases of spatial section and
matter content. We use the Bayesian analysis to obtain the peak of the one-dimensional marginal probability and the 2σ credible
region for each parameter. H0 is given in km/Mpc.s, Ā in units of c, t0 in Gy and ai in units of a0.

The probability of the set of distance moduli
µ0 conditional on the values of a set of parameters
{pi} is given by the Gaussian:

p(µ0|{pi}) ∝ exp
(
− χ2

2

)
. (4)

This probability distribution must be normalized.
Evidently, when, for a set of values of the param-
eters, the χ2 is minimum the probability is max-
imum. This is a valuable information but is not
enough to constraint the parameters.

From the probability distribution (4), a joint
probability distribution for any subset of parame-
ters can be obtained by integrating (marginalizing)
on the remaining parameters, see refs. [21, 22].
So, in order to properly estimate a single parame-
ter, the probability distribution must be marginal-
ized on all other parameters, usually yielding a
quite different result if we try to estimate the pa-
rameter in a two or three-dimensional parameter
space. The reason is that, in such multidimen-
sional parameter space, if a parameter has a large
probability density but in a narrow region, the to-
tal contribution of this region may be quite small
compared to other large regions which have small
probability: in the marginalization process, this

kind of high PDF region contributes little to the
estimation of a given parameter.

Hence the estimation of a given parameter will
be made by marginalizing on all other ones. A
detailed Bayesian analysis of the independent and
dependent parameters is shown in tables 6, 8 and
10 for GCGM, CGM and ΛCDM with flat prior
for H0, and in tables 7, 9 and 11 for GCGM, CGM
and ΛCDM with the HST (Hubble Space Tele-
scope) prior for H0. Each column of these tables
was calculated using a corresponding BETOCS
[23] notebook (including the best-fitting calcula-
tions for the specific model).

The following estimation analyses will focus
on the tables 6–11 and the accompanying figures.

3.1 Estimation of H0: Hubble is not
humble

The predicted value of the Hubble constant
today H0 is the most robust one, with minor
changes for the different models (GCGM, CGM
and ΛDCM) and cases of fixed parameters. When
comparing with ref. [20], H0 is now slightly
smaller.

6



Blucher Proceedings
VIII Encontro Cientı́fico de Fı́sica Aplicada Blucher

GCGM k = 0, k = 0,
with k = 0 Ωm0 = 0 Ωm0 = 0.04 Ωm0 = 0 Ωm0 = 0.04

α −0.57+5.23
−0.43 1.24+4.19

−2.24 0.93+5.46
−1.85 0.67+5.45

−1.66 1.63+5.04
−1.96 1.57+4.71

−1.98

H0 64.78+1.70
−1.70 64.61+1.63

−1.57 64.83+1.72
−1.74 64.80+1.72

−1.74 65.00+1.54
−1.65 64.92+1.52

−1.62

Ωk0 −0.261+0.602
−0.687 0 0.055+0.503

−0.825 0.015+0.491
−0.819 0 0

Ωm0 0.000+0.499
−0.000 0.000+0.297

−0.000 0 0.04 0 0.04

Ωc0 1.022+0.661
−0.485 1.000+0.000

−0.297 0.945+0.825
−0.503 0.945+0.819

−0.491 1 0.96

Ā 1.000+0.000
−0.345 0.989+0.011

−0.240 0.987+0.012
−0.384 0.988+0.012

−0.378 0.987+0.013
−0.286 0.987+0.012

−0.271

t0 14.43+2.50
−1.78 13.74+1.76

−0.95 13.77+2.37
−1.09 13.77+2.80

−1.06 13.48+1.37
−0.66 13.49+1.45

−0.62

q0 −0.741+0.351
−0.324 −0.717+0.296

−0.251 −0.757+0.386
−0.400 −0.764+0.397

−0.366 −0.931+0.385
−0.112 −0.888+0.361

−0.104

ai 0.623+0.185
−0.120 0.740+0.073

−0.179 0.733+0.123
−0.257 0.740+0.105

−0.292 0.760+0.068
−0.144 0.752+0.071

−0.149

p(α > 0) 66.99% 88.41% 88.15% 85.64% 96.74% 95.92%

p(α = 1) 40.97% 88.41% 96.96% 86.08% 67.80% 70.64%

p(Ωk0 < 0) 80.04% − 50.58% 56.64% − −

p(Ωk0 = 0) 43.41% − 85.01% 95.86% − −

p(Ā 6= 1) 0.00% 61.57% 100% 100% 100% 100%

p(q0 < 0) 5.20σ 7.12σ 100% 100% 100% 100%

p(ai < 1) 5.32σ 7.53σ 100% 5.62σ 100% 100%

Table 7: The estimated parameters using the HST prior for the generalized Chaplygin gas model (GCGM) and some specific cases
of spatial section and matter content. We use the Bayesian analysis to obtain the peak of the one-dimensional marginal probability
and the 2σ credible region for each parameter. H0 is given in km/Mpc.s, Ā in units of c, t0 in Gy and ai in units of a0.
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Figure 1: The one-dimensional PDF for H0. The thin line
shows the HST (Hubble Space Telescope) prior, with the 1σ

(68.27%), 2σ (95.45%) and 3σ (99.73%) regions delimited
by red, blue and green lines, respectively. The thick line shows
a typical H0 estimation from SNe Ia analysis in this article,
clearly showing that the HST prior has much larger dispersion
and its 2σ region includes the H0 estimation from SNe Ia.

Figure 1 shows a typical H0 estimation from
SNe Ia analysis in this article, and the HST (Hub-
ble Space Telescope) prior [25] for H0, which has
a much larger dispersion. The effect of the HST
prior on the H0 estimation is small: it slightly
changes the shape PDF for H0, the PDF peak
moves increases (moves to the right) and there are
some very small changes on the left and right dis-
persions.

The minor effect of the HST prior can also

be verified by comparing tables 6, 8 and 10 for
GCGM, CGM and ΛCDM with flat prior for H0
with tables 7, 9 and 11 for GCGM, CGM and
ΛCDM with the HST (Hubble Space Telescope)
prior for H0.

It is important to emphasize that fixing H0 is
not acceptable as the n-dimensional PDF quite
depends on the H0 parameter. For ΛCDM as
an example: χ2

ν is very high (1.563), Ωk0 =
−0.890+0.286

−0.241 and many other totally different pa-
rameter estimations.

3.2 Estimation of α

With respect to ref. [20], the peak values of
α are slightly increased and the dispersion is also
a little larger, for example, the GCGM now gives
α = −0.59+5.27

−0.41. Imposing that the space is flat
or fixing the pressureless matter lead to positive
best values for α . For example, the quartessence
[13, 27] scenario (Ωm = 0) predicts α = 0.90+5.52

−1.83.
Note that the marginalized estimations differs

substantially from those extracted from the mini-
mization of χ2, which gives a large positive best
value α , but the dispersion is quite high, so even
large positive values are not excluded, at least at
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Figure 2: The graphics of the joint PDF as function of (α, Ā) for the generalized Chaplygin gas model. The joint PDF peak is
shown by the large dot, the credible regions of 1σ (68,27%) by the red dotted line, the 2σ (95,45%) in blue dashed line and the
3σ (99,73%) in green dashed-dotted line. The cases for Ωm0 = 0 are not shown here because they are similar to the ones with
Ωm0 = 0.04. The cases for k = 0 are shown in figure 2 of ref. [20].
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Figure 3: The PDF of α for the generalized Chaplygin gas model. The solid lines are the PDF, the 1σ (68.27%) regions are delim-
ited by red dotted lines and the 2σ (95.45%) credible regions are given by blue dashed lines. The cases for Ωm0 = 0 are not shown
here because they are similar to the ones with Ωm0 = 0.04. The cases for k = 0 are shown in figure 3 of ref. [20].

2σ level. And figure 2 for the joint probabilities
for α and Ā and figures 3 and 4 for α and Ā, re-
spectively, clearly show that the marginalization
process changes the peak values and credible re-
gions depending on the number of dimensions.

Of course, the CGM is obtained when α is
fixed to unity. From the analysis of the GCGM it
can be inferred that p(α = 1) = 40.81%, i.e., the
CGM is favoured with a probability of 40.81%.
Restricting to null curvature or fixing the pres-
sureless matter density increases considerably this
value, from 68.22% to 91.09%. Analogously, the
probability to have α > 0 (with more physical
meaning) is 66.74% and this value is quite in-
creased when one or two parameters are fixed.
Both p(α = 1) and p(α > 0) are increased with

respect to ref. [20].

3.3 Estimation of Ā

Like ref. [20], the results indicate that the
value of Ā is close to unity, but now the disper-
sion is slightly smaller. In the case of GCGM
with no fixed parameters, the marginalization of
the remaining four other parameters leads to Ā =
1.000+0.000

−0.348. Again, this could suggest the con-
clusion that ΛCDM (Ā = 1) model is favoured.
However, the accuracy of the computation, due
to the step (between 0.01 and 0.02) used in the
evaluation of the parameter, does not allow this
conclusion. Instead, it means the peak happens
for 0.98 < Ā 6 1. In fact, fixing the curvature or
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CGM k = 0, k = 0,
with k = 0 Ωm0 = 0 Ωm0 = 0.04 Ωm0 = 0 Ωm0 = 0.04

H0 64.73+1.72
−1.70 64.48+1.53

−1.53 64.76+1.74
−1.72 64.74+1.74

−1.73 64.67+1.53
−1.52 64.64+1.52

−1.51

Ωk0 −0.228+0.552
−0.508 0 −0.099+0.564

−0.486 −0.112+0.552
−0.481 0 0

Ωm0 0.000+0.448
−0.000 0.000+0.292

−0.000 0 0.04 0 0.04

Ωc0 1.030+0.448
−0.467 1.000+0.000

−0.292 1.099+0.486
−0.564 1.072+0.481

−0.552 1 0.96

Ā 0.860+0.140
−0.069 0.857+0.141

−0.072 0.804+0.071
−0.070 0.823+0.076

−0.068 0.812+0.057
−0.071 0.834+0.056

−0.072

t0 13.93+0.97
−0.65 14.07+0.78

−0.62 13.95+0.82
−0.63 13.96+0.81

−0.63 13.95+0.69
−0.60 13.97+0.70

−0.61

q0 −0.769+0.358
−0.309 −0.665+0.169

−0.108 −0.768+0.390
−0.339 −0.780+0.406

−0.320 −0.708+0.101
−0.098 −0.693+0.099

−0.090

ai 0.689+0.060
−0.078 0.689+0.064

−0.073 0.702+0.053
−0.051 0.705+0.051

−0.061 0.704+0.053
−0.047 0.702+0.53

−0.51

p(Ωk0 < 0) 78.91% − 61.83% 64.12% − −

p(Ωk0 = 0) 39.84% − 70.90% 66.80% − −

p(Ā 6= 1) 88.96% 96.00% 100% 3.67σ 100% 100%

p(q0 < 0) 6.13σ 100% 100% 100% 100% 100%

p(ai < 1) 6.10σ 100% 100% 100% 100% 100%

Table 8: The estimated parameters for the traditional Chaplygin gas model (CGM) and some specific cases of spatial section and
matter content. We use the Bayesian analysis to obtain the peak of the one-dimensional marginal probability and the 2σ credible
region for each parameter. H0 is given in km/Mpc.s, Ā in units of c, t0 in Gy and ai in units of a0.

CGM k = 0, k = 0,
with k = 0 Ωm0 = 0 Ωm0 = 0.04 Ωm0 = 0 Ωm0 = 0.04

H0 64.83+1.69
−1.72 64.53+1.53

−1.51 64.84+1.72
−1.72 64.83+1.73

−1.72 64.74+1.52
−1.52 64.70+1.51

−1.51

Ωk0 −0.238+0.548
−0.504 0 −0.109+0.558

−0.483 −0.124+0.547
−0.477 0 0

Ωm0 0.000+0.448
−0.000 0.000+0.289

−0.000 0 0.04 0 0.04

Ωc0 1.040+0.446
−0.463 1.000+0.000

−0.289 1.109+0.483
−0.558 1.084+0.477

−0.547 1 0.96

Ā 0.860+0.140
−0.068 0.858+0.139

−0.072 0.806+0.069
−0.068 0.824+0.074

−0.066 0.814+0.056
−0.071 0.836+0.056

−0.070

t0 13.93+0.99
−0.67 14.08+0.78

−0.63 13.95+0.81
−0.64 13.96+0.81

−0.63 13.94+0.70
−0.58 13.96+0.71

−0.60

q0 −0.780+0.357
−0.305 −0.665+0.164

−0.111 −0.778+0.387
−0.336 −0.789+0.400

−0.318 −0.711+0.101
−0.097 −0.697+0.100

−0.088

ai 0.687+0.060
−0.077 0.687+0.064

−0.072 0.700+0.053
−0.050 0.704+0.051

−0.060 0.702+0.053
−0.046 0.700+0.053

−0.051

p(Ωk0 < 0) 80.14% − 63.57% 65.87% − −

p(Ωk0 = 0) 37.48% − 67.57% 63.47% − −

p(Ā 6= 1) 89.22% 96.14% 100% 3.69σ 100% 100%

p(q0 < 0) 6.19σ 100% 100% 100% 100% 100%

p(ai < 1) 6.15σ 100% 100% 100% 100% 100%

Table 9: The estimated parameters using the HST prior for the traditional Chaplygin gas model (CGM) and some specific cases of
spatial section and matter content. We use the Bayesian analysis to obtain the peak of the one-dimensional marginal probability and
the 2σ credible region for each parameter. H0 is given in km/Mpc.s, Ā in units of c, t0 in Gy and ai in units of a0.

the pressureless matter, the preferred value differs
slightly from unity, for example the quartessence
scenario, Ωm = 0, yields Ā = 0.987+0.012

−0.3888. But,
differently from ref. [20], the CGM now pre-
dicts a best value for Ā smaller than unity, Ā =
0.860+0.140

−0.069, and the best value becomes smaller

when one or two parameters are fixed.

In figure 4 the PDF for Ā is displayed, both
for the GCGM and the CGM, where the marginal-
ization is made in all other parameters. Note that
the probability to have Ā 6= 1 (meaning how much
the ΛCDM is rule out) is zero only for the GCGM
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Figure 4: The one-dimensional PDF of Ā for the generalized and traditional Chaplygin gas model. The solid lines are the PDF, the
1σ (68.27%) regions are delimited by red dotted lines, the 2σ (95.45%) credible regions are given by blue dashed lines and the 3σ

(99.73%) regions are delimited by green dashed-dotted lines. The cases for Ωm0 = 0 are not shown here because they are similar to
the ones with Ωm0 = 0.04. The cases for k = 0 are shown in figures 4 and 5 of ref. [20].
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Figure 5: The graphics of the joint PDF as function of (Ωm0,Ωc0) for the generalized Chaplygin gas model, GCGM (tra-
ditional Chaplygin gas model, CGM), where p(Ωm0,Ωc0) is a integral of p(α,H0,Ωm0,Ωc0, Ā) (p(H0,Ωm0,Ωc0, Ā)) over the
(α,H0, Ā) ((H0, Ā)) parameter space. The joint normalized PDF peak has the value 4.624 (5.158) for (Ωm0,Ωc0) = (0.000,0.943)
((Ωm0,Ωc0) = (0.000,1.099)) shown by the large dot, the credible regions of 1σ (68,27%, shown in red dotted line), 2σ (95,45%,
in blue dashed line) and 3σ (99,73%, in green dashed-dotted line) have PDF levels of 1.577, 0.345 and 0.038 (2.191, 0.439 and
0.040), respectively. As Ωk0 +Ωm0 +Ωc0 = 1, the probability for a spatially flat Universe is on the line Ωm0 +Ωc0 = 1, above it we
have the region for a closed Universe (k > 0, Ωk0 < 0), and below, the region for an open Universe (k < 0, Ωk0 > 0).

(due to the step used in the evaluation of Ā), but this probability varies from about 60% to 100%
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ΛCDM ΛCDM: ΛCDM: ΛCDM:
k = 0 Ωm0 = 0 Ωm0 = 0.04

H0 64.75+1.68
−1.68 64.29+1.53

−1.51 63.75+1.58
−1.45 63.86+1.61

−1.55

Ωk0 −0.439+0.636
−0.499 0 0.802+0.188

−0.168 0.729+0.180
−0.159

Ωm0 0.459+0.196
−0.230 0.309+0.082

−0.072 0 0.04

ΩΛ 0.976+0.333
−0.426 0.691+0.072

−0.082 0.198+0.168
−0.188 0.231+0.159

−0.180

t0 14.81+0.87
−0.76 14.80+0.92

−0.77 16.79+1.16
−0.89 16.03+0.98

−0.82

q0 −0.746+0.332
−0.271 −0.532+0.121

−0.116 −0.187+0.170
−0.183 −0.213+0.183

−0.158

ai 0.620+0.060
−0.059 0.604+0.083

−0.070 0 0.448+0.204
−0.159

p(Ωk0 < 0) 90.60% − 0% 0%

p(Ωk0 = 0) 15.44% − 0% 0%

p(q0 < 0) 7.24σ 100% 100% 99.26%

p(ai < 1) 7.24σ 100% 100% 99.38%

Table 10: The estimated parameters for the ΛCDM model and some specific cases of spatial section and matter content. We use the
Bayesian analysis to obtain the peak of the one-dimensional marginal probability and the 2σ credible region for each parameter.
H0 is given in km/Mpc.s, t0 in Gy and ai in units of a0.

ΛCDM ΛCDM: ΛCDM: ΛCDM:
k = 0 Ωm0 = 0 Ωm0 = 0.04

H0 64.82+1.68
−1.66 64.36+1.52

−1.50 63.83+1.58
−1.46 63.94+1.60

−1.55

Ωk0 −0.449+0.631
−0.496 0 0.794+0.191

−0.170 0.683+0.210
−0.185

Ωm0 0.460+0.195
−0.228 0.306+0.081

−0.071 0 0.04

ΩΛ 0.985+0.330
−0.423 0.694+0.071

−0.081 0.206+0.170
−0.191 0.277+0.185

−0.210

t0 14.83+0.86
−0.77 14.83+0.92

−0.78 16.82+1.16
−0.92 16.06+0.98

−0.83

q0 −0.755+0.330
−0.267 −0.537+0.121

−0.115 −0.197+0.176
−0.182 −0.256+0.211

−0.186

ai 0.620+0.058
−0.060 0.604+0.081

−0.072 0 0.380+0.215
−0.095

p(Ωk0 < 0) 91.28% − 0% 0%

p(Ωk0 = 0) 14.27% − 0% 0%

p(q0 < 0) 7.29σ 100% 100% 99.50%

p(ai < 1) 7.29σ 100% 100% 99.57%

Table 11: The estimated parameters using the HST prior for the ΛCDM model and some specific cases of spatial section and matter
content. We use the Bayesian analysis to obtain the peak of the one-dimensional marginal probability and the 2σ credible region
for each parameter. H0 is given in km/Mpc.s, t0 in Gy and ai in units of a0.

for other cases.

In figure 2 the joint probabilities for α and Ā
are displayed, with a non-Gaussian shape. Com-
paring with ref. [20], the peak values now happen
for large values of α and Ā. This figure, com-

pared to figures 3 and 4, is an illustration of the im-
portance of the marginalization process because it
changes the peak values and credible regions de-
pending on whether two or one-dimensional pa-
rameter space is used.
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Figure 6: The graphics of the joint PDF as function of
(Ωm0,Ωc0) for the ΛCDM model model, where p(Ωm0,Ωc0)
is a integral of p(H0,Ωm0,Ωc0) over the H0 parameter space.
The joint normalized PDF peak has the value 14.71 for
(Ωm0,Ωc0)= (0.460,0.981) (shown by the large dot), the cred-
ible regions of 1σ (68,27%, shown in red dotted line), 2σ

(95,45%, in blue dashed line) and 3σ (99,73%, in green
dashed-dotted line) have PDF levels of 4.634, 0.675 and 0.056,
respectively. As Ωk0 +Ωm0 +Ωc0 = 1, the probability for a
spatially flat Universe is on the line Ωm0 +Ωc0 = 1, above it
we have the region for a closed Universe (k > 0, Ωk0 < 0), and
below, the region for an open Universe (k < 0, Ωk0 > 0).

3.4 Estimation of Ωm0 and Ωc0

The unified scenario of quartessence, with no
pressureless matter, is again favoured as, for ex-
ample, the GCGM and CGM (without fixed pa-
rameters) predict Ωm0 = 0.000+0.499

−0.000 and Ωm0 =

0.000+0.448
−0.000, respectively. The same estimations

from ref. [22], Ωm0 = 0.00+0.86
−0.00, and ref. [21],

Ωm0 = 0.00+0.82
−0.00, show that the increased num-

ber of SNe Ia has substantially decreased the es-
timated error. Compared to ref. [20], the disper-
sion is also highly decreased, which once more
favours the quartessence scenario. The case of flat
Universe has an even smaller dispersion for the
quartessence model. See figures 7 and 8.

Like ref. [20], the GCGM, the CGM and the
ΛCDM remarkably lead to almost the same pre-
dictions concerning the dark energy component,
Ωc0, when all parameters are free: 1.012+0.667

−0.489,
1.030+0.448

−0.467 and 0.976+0.333
−0.426, respectively. By

comparing with ref. [20], now Ωc0 (which be-
haves as ΩΛ for ΛCDM) has lower values and nar-
rower dispersions, like Ωm0, see figures 7–9.

The joint probability for Ωm0 and Ωc0 is now
smoother for the GCGM and the CGM cases (fig-
ure 5), with the 1σ , 2σ and 3σ contours of figures

5 and 6 showing significantly smaller regions. So
the analysis for ΛCDM is now quite in agreement
with the results of ref. [26].

3.5 Estimation of Ωk0

In comparison with ref. [20], a closed Uni-
verse is still clearly favoured, but with slightly
smaller probability, i.e., p(Ωk0 < 0). But more
important, the dispersion for Ωk0 is now substan-
tially narrowed, as shown by figures 7–9. The
probability to have a flat Universe, p(Ωk0 = 0),
is now greater (45.70%, 39.84% and 15.44% for
GCGM, CGM and ΛCDM), and after setting the
pressureless matter it increases, exception being
the ΛCDM case.

With respect to refs. [21, 22] (using the
selected 26 SNe Ia data), the dispersion has
also significantly decreased, for example: Ωk0 =
−0.251+0.605

−0.694 and Ωk0 = −0.228+0.552
−0.508 versus

Ωk0 = −0.74+1.42
−1.32 [22] and Ωk0 = −0.84+1.51

−1.23
[21], for respectively GCGM and CGM.

3.6 Estimation of the age of the Uni-
verse, t0

Due to the larger number of SNe Ia used
here with respect to refs. [21, 22], the disper-
sions have been quite decreased. For example,
t0 = 14.42+2.51

−1.77 Gy and t0 = 13.93+0.97
−0.65 Gy esti-

mated here for the GCGM and CGM versus t0 =
15.3+4.2

−3.2 Gy [22] and t0 = 14.2+2.8
−1.5 Gy [21], respec-

tively.
The predicted age of the Universe when no pa-

rameter is fixed has increased with respect to ref.
[20], fortunately not anymore dangerously near
the recent estimations age of the globular clusters
[32], t0 = 12.6+3.4

−2.4 Gy.

3.7 Estimation of the deceleration pa-
rameter q0

The values for the deceleration parameter
q0 are increased (less negative) with respect to
ref. [20]. The estimated errors are significantly
smaller than the ones of refs. [21, 22], for ex-
ample: q0 =−0.730+0.352

−0.328 and q0 =−0.769+0.358
−0.309

versus q0 = 0.80+0.86
−0.62 [22] and q0 = 0.98+1.02

−0.62
[21], for respectively GCGM and CGM.

In all cases, p(q0 < 0), the probability to have
an accelerating Universe today, is equal to or very
near 100%.
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Figure 7: The one-dimensional PDF of Ωk0, Ωm0 and Ωc0 for the generalized Chaplygin gas model. The solid lines are the PDF,
the 1σ (68.27%) regions are delimited by red dotted lines, the 2σ (95.45%) credible regions are given by blue dashed lines and
the 3σ (99.73%) regions are delimited by green dashed-dotted lines. The case for Ωm0 = 0 is not shown here because it is similar
to the one with Ωm0 = 0.04. The case for k = 0 is shown in figure 9 of ref. [20]. As Ωc0 = 1−Ωk0−Ωk0, for Ωm0 = 0 we have
Ωc0 = 1−Ωk0, for Ωm0 = 0.04 then Ωc0 = 0.96−Ωk0 and for Ωk0 = 0 we also have Ωc0 = 1−Ωm0.

3.8 Estimation of the scale factor ai
the Universe begins to accelerate
from

Another useful quantity is the scale factor at
the moment the Universe begins to accelerate, ai,
keeping in mind that the scale factor is normal-
ized with its present value a0 equal to unity. With
respect to ref. [20], ai decreases when no pa-
rameter is fixed. As expected, the larger num-
ber of supernovae in comparison with ref. [22]
yields smaller credible intervals for ai, for exam-
ple ai = 0.626+0.184

−0.123 a0 estimated here for GCGM
versus ai = 0.67+0.25

−0.37 a0 of ref. [22].

The probability the Universe begins to accel-
erate before today, p(ai < 1) in tables 6– 11, is
essentially 100%, being approximately the same
value of the probability to have an accelerating
Universe today, i.e., p(q0 < 0). Theoretically they
should be the same, so the fact that these indepen-
dent probability calculations agree almost exactly
shows the accuracy and reliability of the Bayesian
probability analyses of this work.

4 Conclusions
The present work has performed the most ex-

tensive analysis of the GCGM and CGM in what
concerns the comparison of theoretical predictions
with the type Ia supernovae data, using the 157
data of the “gold sample”. By using the high
productivity of BETOCS (BayEsian Tools for
Observational Cosmology using SNe Ia [23]), it
was possible to make all the best-fittings, parame-
ter estimations and figures shown here.

All positive features of GCGM and CGM were
enhanced with respect to ref. [20]:

• the probability to have α > 0 (with more
physical meaning) is increased, as well as
both p(α = 1) and p(α > 0);

• value of Ā now has slightly smaller disper-
sion;

• the dispersion of Ωm0 and Ωc0 are also
highly decreased, favouring even more the
quartessence [13, 27] scenario;

• the dispersion for Ωk0 is now substantially
narrowed, and the probability to have a flat
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Figure 8: The one-dimensional PDF of Ωk0, Ωm0 and Ωc0 for the traditional Chaplygin gas model. The solid lines are the PDF,
the 1σ (68.27%) regions are delimited by red dotted lines, the 2σ (95.45%) credible regions are given by blue dashed lines and the
3σ (99.73%) regions are delimited by green dashed-dotted lines. The case for Ωm0 = 0 is not shown here because it is similar to
the one with Ωm0 = 0.04. The case for k = 0 is shown in figure 10 of ref. [20]. As Ωc0 = 1−Ωk0−Ωk0, for Ωm0 = 0 we have
Ωc0 = 1−Ωk0, for Ωm0 = 0.04 then Ωc0 = 0.96−Ωk0 and for Ωk0 = 0 we also have Ωc0 = 1−Ωm0.

Universe is now greater;

• predicted age of the Universe (when no pa-
rameter is fixed) has increased, fortunately
not anymore dangerously near the recent es-
timations age of the globular clusters.

One important result concerns the Hubble pa-
rameter, H0. It is not acceptable to fix its value
because arbitrary parameter estimations and usu-
ally bad best-fittings are obtained. As the HST
(Hubble Space Telescope) prior [25] for H0 im-
plies minor effects on all results, we can choose a
flat or HST prior.

The CGM (traditional Chaplygin gas model),
where α = 1, remains competitive and preferred
in many cases: when the five parameters are con-
sidered, the probability is 40.81%, but increases as
much as to 95.94% for the quartessence scenario.

For the parameter Ā, both GCGM and CGM
cases of fixed curvature and matter densities
shows a value near but small than 1 as the best
value of Ā, such that the ΛCDM case (Ā = 1) is
almost ruled out.

The results indicate that, for the GCGM, CGM
and ΛCDM, a closed Universe is favoured. The

GCGM and CGM favour the unified scenario
(quartessence), where the pressureless matter den-
sity is essentially zero.

There are many current and future applica-
tions [20, 21, 22, 33] and developments of BE-
TOCS: using different SNe Ia data sets (SNLS
[34], etc), different priors, different cosmologi-
cal models [35], etc. We plan to release vari-
ant versions for other observational cosmological
data [36, 37, 38, 39], like BETOCX (BayEsian
Tools for Observational Cosmology using X-ray
gas mass fraction of galaxy clusters), so it will
be possible to cross the estimations from different
observational data.
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