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Abstract

In this work we study the Jackiw-Teitelboim model (JT model), as a model that
has the structure of a BF -type topological theory and we treat the dynamics of the
model at the quantum level through the implementation of the constraints origina-
ting from the classical theory of the JT model in the temporal gauge in an appro-

priate Hilbert space.

1 Introduction

In two dimensional space-time, gravita-
tion can be seen as a gauge theory char-
acterized by the Poincaré group ISO(1,1).
As this group does not admit an invari-
ant and nondegenerate quadratic form, the
JT model is based on the (Anti)-de Sitter
group “(A)dS”, the group SO(2,1), which
contains the Lorentz group as a subgroup
and corresponds to a gravitation theory
with a cosmological constant. We see then
that the (A)dS group, taken as a gauge
group, contains naturally the diffeomor-
phism symmetry. In this line we investi-
gate the canonical formulation of the JT
model [1, 2] in order to quantize it through
the Loop Quantum Gravity (LQG) formal-
ism [4, 5]. Following Dirac’s program of
canonical quantization applied to the loop
formalism, we obtain a quantum configu-
ration space. We build the respective kine-
matic Hilbert space and we define the vol-
ume operator in a consistent way. Finally,

we treat the dynamics of the model at
the quantum level through the implemen-
tation of the constraints originating from
the classical theory of the JT model in the
temporal gauge in an appropriate Hilbert
space.

2 The Jackiw-Teitelboim
Model

2.1 The
action

Jackiw-Teitelboim

Pure Gravity in 2 space-time dimensions
cannot be based on the Einstein-Hilbert
action [d*x\/—gR, which is a surface
integral, corresponding to an identically
vanishing Einstein tensor Ry — % guvR =
0. A simple but nontrivial model has
been proposed long ago independently by
Jackiw and by Teitelboim, R —2Q =0, as
a replacement for the 2-dimensional Ein-
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stein equation, which may be derived from
the action [1, 2],

1
Sir=7 [ Ex/=gw(R-29), (1)

where, the scalar field y acts like a La-
grange multiplier.

2.2 BF Model

The action S;7r can be obtained from a
BF type theory, for details see [1, 2]. In
this formulation of gravitation in 2 dimen-
sions, we have a gauge connection 1-form
A,

A(x) =€l (x)P + @ (x)A, (2)

where P;(I = 0,1) are space-time transla-
tions and A is Lorentz boost.

The coefficients in (2) are the zweibein
and Lorentz connection forms

el = e[ﬁdx”, o = oydx*. 3)

The BF action Spr reads
Serl.0) = [ didx (946+AD.g) . (&)

where D, is a covariant derivative and
((pl) = ((p()a ¢1, ll/)

The action (4), which is invariant under
the (A)dS gauge transformations, turns
out to be automatically invariant under the
diffeomorphisms, on shell, as a general
result for topological theories of this is
type. A Legendre transformation yields
the Hamiltonian

H=— / dxA'D.¢;.

The Poisson bracket algebra is defined by
the brackets of the generalized coordinates
and their conjugate momenta. For details
see [1, 2].

I'The vector field €' is an arbitrary test function.

2.3 Constraints Algebra in the
Temporal Gauge

Following an approach commonly used
for the 4-dimensional theory, as described
e.g. in the review [4], we introduce a par-
cial gauge fixing, the “temporal gauge”,
which consists in making vanish the com-
ponent y := eg of the zweibein [1, 2]. This
condition is implemented as a constraint,
x ~ 0.

With this condition, we have two first class
constraints,

_ 2 o
go - ax 1[/()(?) e}c (X)
_ T
axll/(x)axex ()C) (6}7 (X))z
+ QU()es(x) — pr(x)o(x), (5)
gl = a)c(pl + wxaxll/- (6)
The Dirac bracket algebra of these con-

straints is given by

%), %(M)}p =

o (4 lenl).
% (27138> ;
i (Liem).

where %(e) = [dxe'(x)¥%(x)! and
[e,n] = (€dn — N d€). For details see
[1,2].

The independent dynamical variables are
the fields e!, @y, ¢; and y. Their nonvan-
ishing Dirac brackets are

{%(e).91(n)}p =

{gl (8)7%(77)}D =

{e(0),010)}, = {0x), y(1)}p=8(x—y). 7

The final Hamiltonian is

Hp = — / dx (N ()% (x) + N ()% (x)), (8)

where .#0(x) and #"!(x) are arbitrary
functions.
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3 Quantization of the JT
Model

3.1 Quantization

Given the fields e!(x),®(x) and the con-
jugate momenta @;(x),y(x), choose the
representation W [y, y] with

Y 5
o) = s Sy

The quantum algebra of elementary vari-
ables is generated by point holonomy at
each point of .7 = R,

hy. (x)
8u () =

O (x) = ih

exp[—id ¢ (x)],

exp[—ipy(y)]. ()

The smeared momenta on a 1-dimensional
region I C ./ are expressed by

e(l) = /Idxé;(x),d)(l) = /Idx(i)x(x).(IO)

For details see [2, 3].

3.2 Graphs and spin-networks

In the case of the field ¢;(x), a graph is
given by X = {xy,...,x,} in which each
point x; is called the “edge”. To each edge
of X it is associated a real arbitrary, non-
zero number, A;, and the graph X is said tg

be a colored graph or spin-network, X (A
_>
), where A= (A1,...,4,). In the case of
4>
the field y(x), a graph is given by Y (1),
—

where U= (up,...,W,) is the so called
scalar-network. For details see [2, 3].

3.3 Cylindrical Functions

- = —
Given the colored graph T'(A, M) = X(A
%
yUuY(u), then Cylr(z,ﬁ)

2 i is a non-separable Hilbert space.

is the vector

space generated by finite linear combina-
tions of the following functions

Mg euv) =AM o) @A o (),
where,
M) = [T ettt
N = () = T expl—iry(x)].

Y (1) ey

The space Cyl of all cylindrical functions
is defined by

Cyl= [ J Cyl G
(1K)

For details see [2, 3].

3.4 Scalar Product
The scalar product of Cyl is defined by

<N - |JV 5 o >= 00 0.
T(AH) T ) AA Hp

The total kinematical Hilbert space %,
is the Cauchy completion of the space of
cylindrical functions Cyl in the norm de-
fined by the scalar product’. For details
see [2, 3, 4, 5].

3.5 Operators
We can represent the cylindrical functions
iy (1.9) by Kets

T, = X, > ® | Y, 0> .

The configuration operators (9), act on any
cylindrical function as

}Al;lo | CAu>
gA,uo | F,A,,u > =

‘F72’+A07u >7
| T, A, 1+ o >,
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where X = {xo}, Y = {yo}. All these op-
erators are unitary.
The momentum operator é(I) (10) acts as

e {<(€),%(N)}p = 0% (L[e,n]) is not
a Lie algebra due to the structure func-
tions.

These facts imply that the operator cannot

— — be defined directly on .7#%;, consistently.

R - —
o(I)| T, u>= |1 Y Ajyu(xj) | | T, A, H>

XjGX

Its eigenvalues are thus given by A; =
hYex Ajxi(xj), where the present A; are
the continuous analogs of fluxons or spins
of quantum geometry. The action of the
operator @ can be write in an analogous
way. For details see [2, 3].

3.6 Volume Operator

The operator corresponding to the ”volu-
me” V(1) of a spatial region I C .7 acting
on scalar-spin-network states, is defined as

V)T AL H=n Y |
X_/'Eg(XﬂI)

- =
AT A, u> .

This expression shows that the scalar-
spin-networks in %, diagonalize the op-
erator V (I), VI, with eigenvalues given by
finite sums, where A; are arbitrary real
numbers and the spectrum of the volume
operator, denoted by o(V), is discrete in
the sense that we have a base ortonormal
(uncountable) that diagonalizes the opera-
tor V(I). For details see [2, 3].

4 Implementation of the
operators to the quan-
tum level

4.1 Quantum Dynamics

e The scalar constraint %(€) is tremen-
dously non-linear.

What is the idea to circumvent this
problem?

4.2 Regularization of the scalar
constraint ¢

The idea is to build the smeared version of
the classical scalar constraint % (x) (5),

(e}
HN) = [, awi (amx) e
- axw<x>axe;<x>m +Qy(x)e
- <p1<x>w<x>).

We can write ¢, by means of Poisson
Brackets among quantities that are simple
enough to consider their quantization on
H%in- Now, in order to obtain a regulari-
zed version of %, use the notion of seg-
mentation. In our context, a segmentation
S is a decomposition of the real line, so
that, R = Upesl), where I} = [LlaRl)-

The regularized version of % with respect
to a give segmentation S(€) of the .7 is

G(N) = ;ig(l)ZNl
1

{6} -1
[F (ng (gL[+2 _2ng+1 +ng) +-- )

1 20

3
V2

141

B 1 3 _
e {vi ,hL,}DV,f ot —hL}>w1,] Sy

< (%)

(11)

3

2

3
1
1)y 2 -1
P2 {szth,}D) Vz,“F@UL, (UL, —UL)

1

2i 1 6 Q
W' v2 Vi — —(g, — g7}
Ll { Il 9 LI}D) 11 aﬁ (gL[ ng )
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where o, By << 1 for all point L;.

The task now, is to promote the regular-
ized expression (12) to an operator. In our
case the segmentation S(¢€), has a simple
property: The graph F(Z, ﬁ ) is embedded
in S(€) for all €, so that every edge of T
(in our case the points x;) coincides with
a vertex Ly in S(€). Then each interval I,
of the segmentation S(€) contains at most
one edge of the I'. For detaiAls see [2, 3, 5].
The quantum constraint ¢ (N), can for-
mally written as

8io

oc3ﬁh3 lim

Go(N) = Y N
k
[ (g’\]jkl (8Liir — 281, +81,) + - )

16

y ) )
MV — pre i (8L —81L,)

3 3
(MLk-H VIkH _MLkVIk ) 'MLkVIk

Qo’H*c . g o 3
+ g @ &) MLV,
2 3
a-poh’ . TN
- —[13 c (th—thl)w,k], (13)

N LA

where, MLk = hzkl [V,/f,th .

Now we analyze the removal of the regu-
lator. Since the only dependence of € is
in the position of the extra “edge” in the
resulting scalar-spin-network states’, the
limit € — O can be defined in the Hilbert
space of diffeomorphism invariant states
Jpirr- The key property is that in the con-
text of diffeomorphism invariance the po-
sition of the new edges is irrelevant. For
details see 2, 3, 5].

In 7p;rf, we have

(Y()|[%(N), %o(M)]lyr >=0, (14)

for all (Y(¢)| € pisy C Cyl” and for all
\yr >€ Hgin-

The expression (14) is consistent with the
classical expression in which two scalar
constraint operators commute on diffeo-
morphism invariant states. For details see
(2,3, 5].
We conclude this section by defining the
physical Hilbert space #pyy, C Hpsr as
the space of states (Y(¢)| so that,
(Y(e)|%0(N)|yr >=0, (15)
where one of the possible solutions can be
given in terms of

— —
v >=Y (T, H)0,0, 6> . (16)
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