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Abstract

In this work we study the Jackiw-Teitelboim model (JT model), as a model that
has the structure of a BF-type topological theory and we treat the dynamics of the
model at the quantum level through the implementation of the constraints origina-
ting from the classical theory of the JT model in the temporal gauge in an appro-
priate Hilbert space.

1 Introduction

In two dimensional space-time, gravita-
tion can be seen as a gauge theory char-
acterized by the Poincaré group ISO(1,1).
As this group does not admit an invari-
ant and nondegenerate quadratic form, the
JT model is based on the (Anti)-de Sitter
group “(A)dS”, the group SO(2,1), which
contains the Lorentz group as a subgroup
and corresponds to a gravitation theory
with a cosmological constant. We see then
that the (A)dS group, taken as a gauge
group, contains naturally the diffeomor-
phism symmetry. In this line we investi-
gate the canonical formulation of the JT
model [1, 2] in order to quantize it through
the Loop Quantum Gravity (LQG) formal-
ism [4, 5]. Following Dirac’s program of
canonical quantization applied to the loop
formalism, we obtain a quantum configu-
ration space. We build the respective kine-
matic Hilbert space and we define the vol-
ume operator in a consistent way. Finally,

we treat the dynamics of the model at
the quantum level through the implemen-
tation of the constraints originating from
the classical theory of the JT model in the
temporal gauge in an appropriate Hilbert
space.

2 The Jackiw–Teitelboim
Model

2.1 The Jackiw–Teitelboim
action

Pure Gravity in 2 space-time dimensions
cannot be based on the Einstein-Hilbert
action

∫
d2x

√
−gR, which is a surface

integral, corresponding to an identically
vanishing Einstein tensor Rµν − 1

2gµνR ≡
0. A simple but nontrivial model has
been proposed long ago independently by
Jackiw and by Teitelboim, R−2Ω = 0, as
a replacement for the 2-dimensional Ein-
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stein equation, which may be derived from
the action [1, 2],

SJT =
1
2

∫
d2x

√
−gψ(R−2Ω), (1)

where, the scalar field ψ acts like a La-
grange multiplier.

2.2 BF Model
The action SJT can be obtained from a
BF type theory, for details see [1, 2]. In
this formulation of gravitation in 2 dimen-
sions, we have a gauge connection 1-form
A,

A(x) = eI(x)PI +ω(x)Λ, (2)

where PI(I = 0,1) are space-time transla-
tions and Λ is Lorentz boost.
The coefficients in (2) are the zweibein
and Lorentz connection forms

eI = eI
µdxµ , ω = ωµdxµ . (3)

The BF action SBF reads

SBF [A,ϕ ] =
∫

dtdx
(
∂tAi

xϕi +Ai
tDxϕi

)
, (4)

where Dx is a covariant derivative and
(ϕi) =: (φ0,φ1,ψ).
The action (4), which is invariant under
the (A)dS gauge transformations, turns
out to be automatically invariant under the
diffeomorphisms, on shell, as a general
result for topological theories of this is
type. A Legendre transformation yields
the Hamiltonian

H =−
∫

dxAi
tDxϕi.

The Poisson bracket algebra is defined by
the brackets of the generalized coordinates
and their conjugate momenta. For details
see [1, 2].

2.3 Constraints Algebra in the
Temporal Gauge

Following an approach commonly used
for the 4-dimensional theory, as described
e.g. in the review [4], we introduce a par-
cial gauge fixing, the “temporal gauge”,
which consists in making vanish the com-
ponent χ := e0

x of the zweibein [1, 2]. This
condition is implemented as a constraint,
χ ≈ 0.
With this condition, we have two first class
constraints,

G0 = ∂ 2
x ψ(x)

σ
e1

x(x)

− ∂xψ(x)∂xe1
x(x)

σ
(e1

x(x))2

+ Ωψ(x)e1
x(x)−φ1(x)ω(x), (5)

G1 = ∂xφ1 +ωx∂xψ. (6)

The Dirac bracket algebra of these con-
straints is given by

{G0(ε),G0(η)}D = σG1

(
1
e
[ε,η ]

)
,

{G0(ε),G1(η)}D = G0

(
1
e

η∂ε
)
,

{G1(ε),G1(η)}D = −G1

(
1
e
[ε,η ]

)
,

where Gi(ε) =
∫

dxε i(x)Gi(x)1 and
[ε,η ] = (ε ∂xη −η ∂xε). For details see
[1, 2].
The independent dynamical variables are
the fields e1

x , ωx, φ1 and ψ . Their nonvan-
ishing Dirac brackets are{

e1
x(x),φ1(y)

}
D = {ω(x),ψ(y)}D = δ (x− y). (7)

The final Hamiltonian is

HF =−
∫

dx
(
N 0(x)G0(x)+N 1(x)G1(x)

)
, (8)

where N 0(x) and N 1(x) are arbitrary
functions.

1The vector field ε i is an arbitrary test function.

2



Blucher Proceedings
VII Encontro Cientı́fico de Fı́sica Aplicada Blucher

3 Quantization of the JT
Model

3.1 Quantization
Given the fields e1

x(x) ,ω(x) and the con-
jugate momenta φ1(x) ,ψ(x), choose the
representation Ψ [φ1,ψ] with

ê1
x(x) = ih̄

δ
δφ1(x)

, ω̂x(x) = ih̄
δ

δψ(x)
.

The quantum algebra of elementary vari-
ables is generated by point holonomy at
each point of M1 ∼= R,

hλ (x) := exp [−iλφ1(x)],
gµ(y) := exp [−iµψ(y)]. (9)

The smeared momenta on a 1-dimensional
region I ⊂ M1 are expressed by

ê(I) :=
∫

I
dxê1

x(x), ω̂(I) :=
∫

I
dxω̂x(x).(10)

For details see [2, 3].

3.2 Graphs and spin-networks
In the case of the field φ1(x), a graph is
given by X = {x1, . . . ,xn} in which each
point xi is called the “edge”. To each edge
of X it is associated a real arbitrary, non-
zero number, λi, and the graph X is said to
be a colored graph or spin-network, X(

→
λ

), where
→
λ≡ (λ1, . . . ,λn). In the case of

the field ψ(x), a graph is given by Y (
→
µ),

where
→
µ≡ (µ1, . . . ,µm) is the so called

scalar-network. For details see [2, 3].

3.3 Cylindrical Functions

Given the colored graph Γ(
→
λ ,

→
µ) ≡ X(

→
λ

) ∪ Y (
→
µ), then Cyl

Γ(
→
λ ,

→
µ )

is the vector

space generated by finite linear combina-
tions of the following functions

N
Γ(

→
λ ,

→
µ )
(φ1,ψ) = N

X(
→
λ )
(φ1)⊗N

Y (
→
µ )
(ψ),

where,

N
X(

→
λ )
(φ1) = ∏

x j∈X
exp[−iλ jφ1(x j)],

N
Y (

→
µ )
(ψ) = ∏

yk∈Y
exp[−iµkψ(xk)].

The space Cyl of all cylindrical functions
is defined by

Cyl =
∪

Γ(
→
λ ,

→
µ )

Cyl
Γ(

→
λ ,

→
µ )
.

For details see [2, 3].

3.4 Scalar Product
The scalar product of Cyl is defined by

< N
Γ(

→
λ ,

→
µ )
|N

Γ′(
→
λ ′,

→
µ ′)

>= δΓΓ′δ→
λ

→
λ ′

δ→
µ

→
µ ′
.

The total kinematical Hilbert space HKin
is the Cauchy completion of the space of
cylindrical functions Cyl in the norm de-
fined by the scalar product2. For details
see [2, 3, 4, 5].

3.5 Operators
We can represent the cylindrical functions
N

Γ(
→
λ ,

→
µ )
(φ1,ψ) by kets

| Γ,
→
λ ,

→
µ>=| X ,

→
λ>⊗ | Y,

→
µ> .

The configuration operators (9), act on any
cylindrical function as

ĥλ0 | Γ,λ ,µ > = | Γ,λ +λ0,µ >,

ĝµ0 | Γ,λ ,µ > = | Γ,λ ,µ +µ0 >,

2HKin is a non-separable Hilbert space.
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where X = {x0}, Y = {y0}. All these op-
erators are unitary.
The momentum operator ê(I) (10) acts as

ê(I) | Γ,
→
λ ,

→
µ>=

[
h̄ ∑

x j∈X
λ jχI(x j)

]
| Γ,

→
λ ,

→
µ> .

Its eigenvalues are thus given by λI ≡
h̄∑x j∈X λ jχI(x j), where the present λ j are
the continuous analogs of fluxons or spins
of quantum geometry. The action of the
operator ω̂ can be write in an analogous
way. For details see [2, 3].

3.6 Volume Operator
The operator corresponding to the ”volu-
me” V (I) of a spatial region I ⊂M1 acting
on scalar-spin-network states, is defined as

V̂ (I) | Γ,
→
λ ,

→
µ>=

h̄ ∑
x j∈E (X∩I)

∣∣λ j
∣∣

. | Γ,
→
λ ,

→
µ> .

This expression shows that the scalar-
spin-networks in HKin diagonalize the op-
erator V̂ (I), ∀I, with eigenvalues given by
finite sums, where λ j are arbitrary real
numbers and the spectrum of the volume
operator, denoted by σ(V̂ ), is discrete in
the sense that we have a base ortonormal
(uncountable) that diagonalizes the opera-
tor V̂ (I). For details see [2, 3].

4 Implementation of the
operators to the quan-
tum level

4.1 Quantum Dynamics
• The scalar constraint G0(ε) is tremen-
dously non-linear.

• {G0(ε),G0(η)}D = σG1
(1

e [ε,η ]
)

is not
a Lie algebra due to the structure func-
tions.
These facts imply that the operator cannot
be defined directly on HKin consistently.

What is the idea to circumvent this
problem?

4.2 Regularization of the scalar
constraint G0

The idea is to build the smeared version of
the classical scalar constraint G0(x) (5),

G0(N) =
∫
M1

dxN(x)
(

∂ 2
x ψ(x)

σ
e1

x(x)

− ∂xψ(x)∂xe1
x(x)

σ
(e1

x(x))2 +Ωψ(x)e1
x(x)

− φ1(x)ω(x)
)
. (11)

We can write G0 by means of Poisson
Brackets among quantities that are simple
enough to consider their quantization on
HKin. Now, in order to obtain a regulari-
zed version of G0, use the notion of seg-
mentation. In our context, a segmentation
S is a decomposition of the real line, so
that, R= ∪Il∈SIl , where Il = [Ll,Rl).
The regularized version of G0 with respect
to a give segmentation S(ε) of the M1 is

G0(N) = lim
ε→0

∑
l

Nl

·

[
iσ
β

(
g−1

Ll

(
gLl+2 −2gLl+1 +gLl

)
+ · · ·

)
·

(
2i
α

h−1
Ll

{
V

1
2

Il
,hLl

}
D

)3

V
1
2

Il
+

2σ
αβ

U−1
Ll

(
ULl+1 −ULl

)
·

(
h−1

Ll+1

{
V

1
2

Il+1
,hLl+1

}
D

V
3
2

Il+1
−h−1

Ll

{
V

1
2

Il
,hLl

}
D

V
3
2

Il

)
·

(
2i
α

h−1
Ll

{
V

1
2

Il
,hLl

}
D

)6

VIl −
Ω

αβ
(gLl −g−1

Ll
)

· h−1
Ll

{
V

1
2

Il
,hLl

}
D

V
3
2

Il
− i

2α
(hLl −h−1

Ll
)ωIl

]
, (12)
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where αφ1, βψ << 1 for all point Ll .
The task now, is to promote the regular-
ized expression (12) to an operator. In our
case the segmentation S(ε), has a simple

property: The graph Γ(
→
λ ,

→
µ) is embedded

in S(ε) for all ε , so that every edge of Γ
(in our case the points xk) coincides with
a vertex Ll in S(ε). Then each interval Il
of the segmentation S(ε) contains at most
one edge of the Γ. For details see [2, 3, 5].
The quantum constraint Ĝ0(N), can for-
mally written as

Ĝ0(N) =
8iσ

α3β h̄3 lim
ε→0

∑
k

Nk

·

[(
ĝ−1

Lk
(ĝLk+2 −2ĝLk+1 + ĝLk)+ · · ·

)
· M̂3

Lk
V̂

1
2

Ik
− 16

α4h̄4 ĝ−1
Lk
(ĝLk+1 − ĝLk)

· (M̂Lk+1V̂
3
2

Ik+1
− M̂LkV̂

3
2

Ik
) · M̂6

Lk
V̂Ik

+
Ωα2h̄2σ

8
(ĝLk − ĝ−1

Lk
) · M̂LkV̂

3
2

Ik

− α2βσ h̄3

16
(ĥLk − ĥ−1

Lk
)ω̂Ik

]
, (13)

where, M̂Lk := ĥ−1
Lk

[
V̂

1
2

Ik
, ĥLk

]
.

Now we analyze the removal of the regu-
lator. Since the only dependence of ε is
in the position of the extra “edge” in the
resulting scalar-spin-network states3, the
limit ε → 0 can be defined in the Hilbert
space of diffeomorphism invariant states
HDi f f . The key property is that in the con-
text of diffeomorphism invariance the po-
sition of the new edges is irrelevant. For
details see [2, 3, 5].
In HDi f f , we have

(ϒ(φ)|
[
Ĝ0(N), Ĝ0(M)

]
|ψΓ >= 0, (14)

for all (ϒ(φ)| ∈ HDi f f ⊂ Cyl∗ and for all
|ψΓ >∈ HKin.

The expression (14) is consistent with the
classical expression in which two scalar
constraint operators commute on diffeo-
morphism invariant states. For details see
[2, 3, 5].
We conclude this section by defining the
physical Hilbert space HPhys ⊂ HDi f f as
the space of states (ϒ(φ)| so that,

(ϒ(φ)|Ĝ0(N)|ψΓ >= 0, (15)

where one of the possible solutions can be
given in terms of

|ψΓ >= ∑c(Γ,
→
µ)|Γ,

→
0 ,

→
µ> . (16)
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