

The Baylis-Hillman reaction: Our vision and experience D. Basavaiah

School of Chemistry, University of Hyderabad, Hyderabad-500 046, India E-mail: basavaiahdchem@uohyd.ac.in,basavaiahdeevi@gmail.com

Keywords: Baylis-Hillman reaction, Organocatalysis, Atom economy

Abstract Speech

To meet the demands of emerging trends, the present day organic chemistry emphasizes the need for discovering new reactions or strategies construction of carbon-carbon bonds mainly involving the concepts of atom-economy, organocatalysis, and easy generation of useful molecules containing proximal functional groups for assembling the required carbon frameworks. The Baylis-Hillman (also known as the Morita-Baylis-Hillman) reaction is one such organocatalytic atom-economy reaction developed in recent years, for the construction of carbon-carbon bonds leading to the production of diverse classes of molecules having several functional groups in close proximity. It is a three component atom-economy carbon-carbon bond forming reaction between the α-position of activated alkenes and electrophiles under the influence of a catalyst (most commonly an organic catalyst). 1-8 These multi-functional molecules, which are usually known as Baylis-Hillman (BH) adducts, showed enormous utility in many directions of synthetic and mechanistic chemistry, clearly demonstrating the power of proximity of the functional groups in molecules. 1-8

We have been systematically working on various aspects of this reaction for the last 29 years with the main objective of understanding and developing the Baylis-Hillman reaction as a useful and powerful tool in synthetic chemistry. 9-21 We have in fact, contributed significantly to its growth with respect to all the three essential components. 9-15 We have also demonstrated very high applicability and potential of the Baylis-Hillman adducts in a number of organic transformations leading to the synthesis of different carbocyclic and heterocyclic compounds, including bioactive molecules. 16-21 This talk will present our vision, objectives, and endeavors towards the development of this reaction as a source of opportunities, challenges and creativity in synthetic chemistry keeping its applications as the primary goal.

REFERENCES

¹Basavaiah, D.; Sahu, B. C. *Chimia* **2013**, *67*, 8.

²Wei, Y.; Shi, M. Chem. Rev. **2013**, 113, 6659.

³ Liu, T-Y.; Xie, M.; Chen, Y-C. Chem. Soc. Rev. 2012, 41, 4101.

⁴Basavaiah, D.; Veeraraghavaiah, G. Chem. Soc. Rev. 2012, 41,

⁵Basavaiah, D.; Reddy, B. S.; Badsara, S.S. *Chem. Rev.* **2010**,

⁶Singh, V.; Batra, S. *Tetrahedron* **2008**, *64*, 4511.

⁷Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. **2007**, 36. 1581

Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. **2003**, 103.811.

Basavaiah, D.; Roy, S.; Das, U. *Tetrahedron*, **2010**, *66*, 5612. ¹⁰Basavaiah, D.; Sreenivasulu, B.; Rao, A. J. *J. Org. Chem.* 2003, 68, 5983.

Basavaiah, D.; Rao, A. J. Chem. Commun. 2003, 604.

¹²Basavaiah, D.; Sharada, D. S.; Kumaragurubaran,N.; Reddy, R. M. J. Org. Chem. 2002, 67, 7135.

¹³Basavaiah, D.; Kumaragurubaran, N.; Sharada, D. S. *Tetrahedron Lett.* **2001**, *42*, 85.

¹⁴Basavaiah, D.; Gowriswari, V. V. L.; Bharathi, T. K. *Tetrahedron*

Lett. 1987, 28, 4591.

15 Basavaiah, D.; Gowriswari, V. V. L. Tetrahedron Lett. 1986, 27,

2031. ¹⁶Basavaiah, D.; Badsara, S. S.; Sahu, B. C. *Chem. Eur. J.* **2013**,

19, 2961.

Basavaiah, D.; Devendar, B.; Aravindu, K.; Veerendhar, A.

Chem. Eur. J. **2010**, *16*, 2031.

¹⁸Basavaiah, D., Devendar, B.; Lenin, D. V.; Satyanarayana, T.

Synlett **2009**, 411. ¹⁹Basavaiah, D.; Roy, S. *Org. Lett.* **2008**, *10*, 1819.

²⁰Basavaiah, D.; Reddy, K. R.; Kumaragurubaran, N. *Nature* Protocols 2007, 2, 2665.

²¹Basavaiah, D.; Satyanarayana, T. *Chem. Commun.* **2004**, 32.