
‘GHShot’: a collaborative and distributed visual version
control for Grasshopper parametric programming

Verina Cristie1, Sam Conrad Joyce2
1,2Singapore University of Technology and Design
1verina_cristie@mymail.sutd.edu.sg 2sam_joyce@sutd.edu.sg

When working with parametric models, architects typically focus on using rather
structuring them (Woodbury, 2010). As a result, increasing design complexity
typically means a convoluted parametric model, amplifying known problems:
`hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This
practice is in contrast with conventional software-programming where
programmers are known to meticulously document and structure their code with
versioning tool. In this paper, we argue that versioning tools could help to
manage parametric modelling complexity, as it has been showing with software
counterparts. Four key features of version control: committing, differentiating,
branching, and merging, and how they could be implemented in a parametric
design practice are discussed. Initial user test sessions with 5 student designers
using GHShot Grasshopper version control plugin (Cristie and Joyce 2018,
2017) revealed that the plugin is useful to record and overview design
progression, share model, and provide a fallback mechanism.

Keywords: Version Control, Parametric Design, Collaborative Design, Design
Exploration

INTRODUCTION
The field of architecture is traditionally interdisci-
plinary and has adopted many technologies; from
new materials in the industrial age, to software and
algorithmic approaches in the digital era. CAD sys-
tems were first proposed in 1960s; and to further
manipulate geometries, associative parametric pro-
gramming was introduced in 1990s. This graph-
based interface was popularised by tools such as
Generative Components, Grasshopper, and Dynamo,
where instead of using conventional text-based pro-
gramming, visual programming is used.

Parametric modelling and software develop-

ment bear similarities, particularly in their work-
flow and development cycle. Code produces soft-
ware, while parametric modelling produces geom-
etry. Hence, manipulating code results in change
in software output, much like manipulating param-
eter and links between component results in change
in geometry. Both software and parametric models
are developed through iteration cycles. Modern soft-
ware development practices ‘Agile’ method (Huo et.
al, 2004) where code is developed in iterative cycle of
building and testing; a parallel to an iterative process
of design solution generation and evaluation.

Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3 - eCAADe 37 / SIGraDi 23 | 35



Complexity in Software Development and
Parametric Modelling
With the rise in use and complexity in programming,
similar challenges have been faced managing this in
both fields: software code reached millions of lines,
and equally parametric models to many hundreds
of components and thousands of links in commer-
cial projects. Tangled links or ‘spaghetti’ paramet-
ric model (see Fig. 1) is a classic example of unman-
ageable models (Davis et. al, 2011). Large paramet-
ric models are often inflexible (simple change often
breaks models); model’s changes are often not eas-
ily found/detectable, and model reuse and sharing
problematic (Smith, 2007).

Cheaper and more powerful computers in the
1960s allowed for wider use of software, and larger
more complex software requirements, driving the
software industry into the so-called ’software crisis’
(Dijkstra, 1972). Software crisis is identified as incom-
plete and degrading software performance due to
unmaintainable software complexity (Valdez, 1988).
The most popular case was the decade long IBM 360
Operating System development between 1960 and
1970 that resulted in a multi-million-dollar project
overrun; the reaction to which catalysed a structured
transformation of the software development process
to software engineering (Brooks, 1995). Key good
practices resulting were object-oriented program-
ming (OOP) and source code control system (SCCS)
(Rochkind, 1972) were both developed during this
period of time. Both of which will be further dis-
cussed in later parts of this paper, but these com-
bined user-best-practices and technical solutions re-
sulted in the ubiquitous software development ap-
proach we have today; where it is not uncommon to
have tens to even thousands of people collaborating
on code bases millions of lines long to build scalable
complex software projects from the ’80s onwards.
However, in architecture, this structured usage focus
has been mainly on CAD or BIM model complexity
and only recently has parametric modelling begun
to exhibit acute issues in similar ways. For example,
in March 2019, Autograph[1] plugin was released to

help automatic arrangements of objects inGrasshop-
per canvas, signifying growing complexity in para-
metric modelling. A thread in Grasshopper forum [2]
in April 2018 showed large grasshopper files design-
ers generate, ranging from 1000 to even 20,000 com-
ponents. Hence, there is a growing critical drive to
start looking into adopting not only the technologies
in software design, but also the good practices of the
software development process to parametric design.

Figure 1
Grasshopper model
with 1,234
components
(Picture credit:
Lukasz Domagala)

Adoption of Object-Oriented Programming
(OOP)
In OOPpractice, programming complexity is reduced
by splitting up code into functional reusable man-
ageable pieces called ‘objects’; i.e.: to encapsulate
data and functions that operate on it into mod-
ules. Modularity and encapsulation are two princi-
ples of OOP. Which uses nouns to explain compo-
nents/data, and verbs to explain function action. This
makes it clearer what is happening within code; re-
ducing mental overhead whilst programming. Davis
(2013) recommended parametric models to adopt
this modularity to address inflexibility. An inflex-
ible parametric model breaks or needs substantial
remodelling even for minor changes, as lack of hi-
erarchy and separation of variables and functions
means a lot of interconnected networks. By parti-
tioning parametric models into separate logical ele-
ments according to their functions, models are eas-
ier to understand, edit, and reuse; even as design
develops, especially in the case of later contributors.
Pena (2014), further emphasized that with separa-

36 | eCAADe 37 / SIGraDi 23 - Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3



tion of functionality, parametric models could use
internal and external code to communicate and ex-
tend the functionality of the model, much like the
use of different libraries in software. A recent exam-
ple of this OOP practice can be seen in a ‘distributed
data model’ (Wortmann and Tunçer, 2017) paradigm
used in the Morpheus Hotel project (Muscettola et
al, 2017), where the model was divided into hun-
dreds of parametric model and geometry files, of
which each is processed individually before combin-
ing them again, to manage its 1,668,301 different
parts of building structures and façade systems.

Next: Adoption of Version Control System?

Figure 2
Three generations
of code versioning
system: local
(locking) system
(left), centralised
system (middle),
and distributed
system (right).

While OOP practice has a growing adoption and
positive impact specifically in organised commer-
cial parametric modelling practice, SCCS (more com-
monly called version control systems) are so not well
known and even less so applied in parametric design
circles. In software development, version control is
now almost ubiquitously used to maintain different
versions of code and collaboration.

The fundamental concept of versioning revolves
around code saving (pushing) and code download-
ing (pulling) to and froma shared repositorybetween
collaborators. There are three types of versioning sys-
tems (see Fig. 2): local (locking), centralised, and dis-
tributed. In a locking system,many versions could be
created but only one user is allowed to access code at
a time (only one channel of push and pull). In a cen-
tralised system, everyone can pull code at any time,
but before pushing to the repository, one should al-
ways have the latest version. If currently user A and
user B are editing the same code, and user A pushes
his/her edit first, user B will need to first download
that edit before able to push his/her own edit. In this

manner, a single central latest version is alwaysmain-
tained. Lastly, in a distributed system, each machine
has a local repository and manages its own version-
ing of code. Users can make local checkpoints (‘com-
mits’) before sending (‘pushing’) them to the server,
andmultiple files of the same version can exist. Users
only need tomerge themwhen they choose to do so.

Locking system is the earliest versioning sys-
tem developed and in practice, it is rarely used as it
doesn’t allow collaborators to work in parallel. Aish
(2000) proposed centralised versioning system for
design in Bentley’s Digital Project (currently named
as Project Wise) as there is a need for a clear record
of action - who did what in the project. Compara-
bly, Burry and Holzer (2009) also implemented a cen-
tralised sharing system to allow ease of parametric
model sharing in Gehry Technologies. However, the
project had an issue with the binary file merging and
thus in its implementation, a locking systemwasused
instead. Both implementations, nevertheless, were
BIM-based, andmore apt for the later stage of design;
and as such could not support creative process well.

PARAMETRICMODEL VERSIONING
‘GHShot’ was developed to realise a distributed
versioning system for parametric modelling in
Grasshopper (Cristie and Joyce 2018, 2017). It con-
sists of (1) a custom Grasshopper component de-
veloped to allow users to send design progression
directly from their modelling environment, and (2) a
cloud repository to store the sent parametric models
and its attributes. This cloud server provides web-
page views for users and others to view and navi-
gate projects and designs, as well as give feedback
and download models. In the next part, common
practices in distributed versioning systems - namely
committing, branching, differentiating, and merging
code, and what these practices mean for parametric
modelling, and how it could be translated into para-
metric modelling practice will be further discussed.

Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3 - eCAADe 37 / SIGraDi 23 | 37



Figure 3
Figure 3 - Code
versioning example
of a simple addition
program written by
two programmers.
User_A started by
writing code that
will take two
numbers and print
them (1). User_B
wrote add function
to add both
numbers by
branching the code
(2) and merge it
back (4). User_A
also modified part
of the code (3).
Action records are
historically tracked
(left).

Parametric Model Development Progres-
sion Capture (Committing)
In software versioning, when code is committed a
checkpoint is created, an internal ‘save as’ functional-
ity so that programmers don’t have to create a nam-
ingconvention system/structure for each commit. In-
stead, the programmer creates a commit message,
which is a message describing the changes in the
current commit. This is helpful for the code owners
themselves and other programmers who look at the
code as they will be able to understand what inten-
tions areof the changes in that specific commit. Once
the code is committed, the owner then can push the
code to the server so that the code is saved in the
repository. By periodically pushing the changes all
collaborators who have access to the cloud can un-
derstand theprogressionof the codeandpull towork
on their own versions based on someone else’s code.
In addition, should the code break in a way that can’t
be understood or fixed, a previous commit can be
pulledwhere the stateof the codeworkedbefore and
developed from here.

Meanwhile, without a versioning system, gener-
ally files of different versions are maintained by mak-
ing copies and giving each file a different name. For
example, designers making modification to their de-
signs could name their Grasshopper files: file_1.gh,
file_2_v2.gh, file_3_finalfinal.gh, and so on. This ir-
regular naming convention failed to describe rela-

tionships between the files (e.g. how is file_1 related
to file_3_finalfinal?). On the other hand, while in a
typical BIM environment, files are strictly named -
coding everything from project code, level, location,
classification, etc (see Fig. 4), this system is unwieldy
and difficult to enforce in the early design stage. Ad-
ditionally, it also lacks visual representation of each
file that could represent the design progression bet-
ter. Temporal design versions per designers’ commit
are especially important tomonitor design evolution,
identify individual contributions, and combine and
reuse concepts (Aish, 2000). Work by Sakai and Tsun-
oda (2015) demonstrated how a history tree can be
used to track collaborative house design progression
visually in 3D WebGL. This is a good starting point
towards a better design history documentation and
managing design complexity; despite the limitation
of 3D web-based geometry editor for producing de-
signs. GHShot expands on these ideas to bring a bet-
ter design versioning practice to the wider commu-
nity of parametric designerswith the commonlyused
Grasshopper.

Figure 4
BIM System naming
convention (Source:
[3])

GHShot implemented a distributed versioning sys-

38 | eCAADe 37 / SIGraDi 23 - Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3



tem as it is important for designers to work on their
own versions during exploration stage and not be
confined to the central master version. However, un-
like traditional distributed system that has both lo-
cal and cloud repository, local repository was not im-
plemented. Parametric modelling is mostly done on
a workstation connected to an online system unlike
programming’s remote work. Hence, commit and
push operations are combined into a save operation
on theGHShotGrasshopper component button. This
was also chosen remove overhead of designers hav-
ing to learn another local versioning system. Upon
clicking, the parametric model and its attributes will
be sent to theURL set anddesigners can immediately
see what they have just sent in the web. Users can
commit their designs at any relevant point during the
design progression, and other designers can down-
load the models and modify them. Designs commit-
ted are shown in a tree visualisation on the web so
that design progression can be traced.

Parametric Model Change Detection (Dif-
ferentiating)
In software versioning the ‘Diff’ (short for difference)
utility tool (Hunt and Mcllroy, 1976) and its many
derivatives is a popular tool to compare and dis-
play differences between two files. By being able
to understand what changed between an old and a
new version, programmers are able to identify lines
of code that made up the new features in the soft-
ware, and/or contributed to a new error in the soft-
ware. Given thatmany versions/options of design are
saved, a parametric ‘diff’ would be helpful to under-
stand the change in between the parametric model
- such as what components and links are deleted,
added, or changed, and designers could potentially
see how that change relates to the geometric differ-
ence.

To show changes, Diff tool highlights deleted
lines of code from the old version in red and added
lines in the new version in green. In the tool ‘MACE’,
Zaman et. al (2017) focused on making an inter-
face that could highlight differences of nodes (com-

ponents) and edges (links) between different design
alternatives. However, the tool is built on top of
a stand-alone 2D parametric pattern generator tool
and doesn’t provide end-to-end support for para-
metric modelling process. In GHShot, changed com-
ponents and links in between commits are high-
lighted in red (deleted), green (added), and yellow
(changed attributes inside components) for a down-
loaded model.

Parametric Model Alternative Generation
(Branching)
Both parametric modelling and software suffer from
the challenge of unclear goals in the beginning and
changing goals throughout development. For exam-
ple, a new software feature could suddenly be re-
questedwhile the software has already been used for
the client’s daily operation. A versioning system facil-
itates this by allowingprogrammers towrite the code
for the new feature in a ‘branch’. By doing so, this new
feature could be tested separately andwould not dis-
rupt the master (stable) code used currently. Simi-
larly, programmers could also develop different fea-
tures in different branches so they would not disrupt
each other’s work.

In parametric modelling environment, we be-
lieve this branching practice embodies two types of
design activities, both resulting in creation of design
alternatives: (1) exploring a different but parallel de-
sign direction and (2) exploring a range of compara-
ble design options within a parametric exploration
(changing parameters). Generation of alternatives
is a core activity in parametric modelling, and this
should be done seamlessly in any versioning system
for these systems. In GHShot implementation, True/-
False Toggle is used. A designer can choose to set
as true or false while committing the design. Set-
ting to true means that a new design concept/op-
tions is generated, while setting to falsemeans a nor-
mal commit of progression and not branching.

Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3 - eCAADe 37 / SIGraDi 23 | 39



Parametric Design Convergence from mul-
tiple alternatives (Merging)
In software practice features or fixes done on code
branches are eventually merged back into the mas-
ter code if they are useful or abandoned if they are
deemed not useful. However, in the early paramet-
ric design phase there is unlikely to be a ‘master’ ver-
sion yet. As many design alternatives are explored,
design branches could be created. Merging practice
then could be seen as making a new design iteration
inspired by previously created (two or more) alterna-
tives.

Software code is text-based and automatic
merge from two different branches could be done as
long as there is no ‘conflicts’, or different code in the
same line number. Grasshopper parametric model
is XML-based, and hence is also text-based. How-
ever, simply adding components and links from one
Grasshopper file to another could cause theparamet-
ricmodel not towork correctly. A betterwayofmerg-
ing is then for adesigner to copyparts fromother files
to his/her own file to further develop the design.

With parametric model versioning tool in place,
parametric design progression is now captured,
stored in the cloud repository. Parametric model
‘snapshots’ mean empirical data of who did what de-

sign, at what time. In the next part, what could be
donewith this data, andhow this data could facilitate
a design exploration process will be discussed.

BEYOND CODE AND PARAMETRIC MODEL
VERSIONING
Analytics and User Feedback
Although Git [4] is a popular versioning tool, dis-
tributed versioning didn’t gain its ubiquity and im-
portant position until the rise of Github [5]. Git
is typically installed in programmer’s local machine,
and programmers can push and pull their code to
and fromGithub cloud repository, essentially sharing
their code to their teams or wider programmer com-
munity. As of May 2019 [6], there are over 39 million
user accounts and over 29million projects onGithub.
One important additional feature of Github on top of
Git is code analytics; where an overview of the num-
ber of commits done by each user, code frequency,
traffic of code, and other project-related information
are given and visualised in graph format. Having this
feature gives a team insight to monitor their project
and streamline their processes. In addition, with the
community-driven (public) repository, feedback or
issues may be quickly gathered and acted upon, im-
proving the software in faster iterations.

Figure 5
Parametric model
commits and
difference
detection. From
initial three existing
lines (1), two lines
are deleted (2) –
highlighted in red.
Length of
horizontal and
vertical intersecting
lines are modified
(4) – highlighted in
yellow.

40 | eCAADe 37 / SIGraDi 23 - Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3



Figure 6
Parametric Model
Branching and
Merging Practice.
Commit (2) has 3
branches (3,4,5)
based on its
diagonal pattern.
Commit (6) is the
merge from (4) and
(5)

Inspired by features in the Github repository, the
web repositoryofGHShot consists of fourmainviews:
(1) snapshot view (see Fig. 7), (2) history tree (see Fig.
8), (3) design analytics (see Fig. 9), and (4) 3D model
view with commenting and rating feature (see Fig.
10). Snapshot view gives a quick overview of latest
designs uploaded. The history tree provides relation-
ship between designs, showing the project’s para-
metric model progression and exploration. Analytics
view allows comparison of quantitative or categori-
cal performance attributes of design options. The 3D
viewer enables users to give feedback on the design;
this dual view is analogous to the duality of objec-
tivity and subjectivity in design - there is no ‘true’ or
‘false’ solution, but ‘good’ or ‘bad’. Design, after all
is a ‘wicked problem’ (Rittel and Webber, 1973), and
will stopwhena satisfacing solution is found. Further,
as a difference in code could produce a difference in
software outcome andperformance, different design
schema produces different geometry and its perfor-
mance output. Versioning parametric model allows
progressive modelling (Wang et. al, 2019) - paramet-
ric models of different design schema can now be
compared for optimisation effort.

GHShot User Test Session and Interview
To understand how designers would interact with
a parametric design versioning tool, and how the
tool could likely affect design explorationprocess, we
conducted GHShot user test session followed by in-
terview after. Five student designers (undergraduate
and postgraduate) with 2-10 years of Grasshopper
experience were to explore a simple tower structure
parametric model (approximately 20 components)
individually, making models of their liking while still
minding the performance value (deflection and uti-
lization). One-hour time limit was given, and GHShot
was to be used in the process.

Table 1
Summary of
designer’s profile
and GHShot use

Designers were asked if GHShot was easy to use; as
an easier tool means less learning curve and likelier
for designers to integrate GHShot tool into their de-
sign workflow). Most designers found the tool to be
easy touse (seeTable1), exceptD1whogave5/10be-
cause of technical difficulties - the slow speed send-
ingmodel fromGrasshopper to the server. Designers

Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3 - eCAADe 37 / SIGraDi 23 | 41



were observed to be saving their progression period-
ically and creating branches as they made design al-
ternatives (see Table 2). D1 and D4 were asked why
they didn’t make any branches, and it was because of
the 1-hour time limit. As they did not save too many
options, linearly saving was enough and consistent
with their linear exploration. Should they be given
a longer time and to collaborate with other design-
ers, they would use the branching feature more. D5
asked if it was possible to modify the tree history (by
deleting or moving designs). In this manner, GHShot
was treated as a ‘design gallery system’ (Woodbury et
al, 2017), where designers filter and manage design
options they generated.

Below is feedback on GHShot extracted from the
interview after the design session:

On branching and design history view:

• Helpful to understand the link between the
geometry and parametric, to remind yourself
why you change certain things (D1)

• Idea of making branches and versions is really
easy to understand. Other people can look at
your work and understand how you started
at one point and came up with certain option
(D3)

On analytical graph:

• Useful to compare designs (D1), and see
trends (D5)

• Useful to see how change in elements affect
performance (D2)

On 3D Viewer:

• Easily sending and viewing my model online
means I could free up my machine’s graphic
resources (D4)

• Good to see progress, especially for collabora-
tion or presentation (D5)

Others:

• Convenience of having backup copies should
the current version doesn’t work (D2)

Figure 7
Snapshot View

Figure 8
History Tree

Figure 9
Design Analytics

Figure 10
3D Viewer

42 | eCAADe 37 / SIGraDi 23 - Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3



• Unlike going back and forth with undo and
redo, having different copies of your designs
allow you to think about your overall design
(D3)

• The tool allows not only to look at immediate
previous design iteration, but also the over-
all design iteration from the beginning, allow-
ing you to choose alternatives that might not
be the best performance, but good perfor-
mance enough to continue developing inter-
esting design (D5)

Overall, the feedback received seemed to be posi-
tive, leveraging on theGHShot’s capability to capture
end-to-end design progression and design options
as they are generated, and thus potentially givingde-
signers the capability to navigate their exploration
process better. Despite the individual user test ses-
sion conducted, designers mentioned how the tool
can be useful in a collaborative environment, which
will be conducted in our future testing.

CLOSING
We started by laying out the similar pattern of grow-
ing complexity faced by the software development
field andparametricmodelling. Object-orientedpro-
gramming (OOP) and code versioning system were
born out of the need to improve collaboration and
manage the complexity that comes with bigger and
more complex software projects. Parametric mod-
elling has started to adopt the paradigm of modular-
ity - a concept of OOP, where there is a clear separa-
tion of functions inside parametricmodel, resulted in
a more structured/organised design schema. In par-
allel to modularity, we are proving a powerful next
step to take is for the design community to explore
the potential adoption of a design versioning tool.

The current state-of-the-art distributed version-
ing system provided a clear picture of how a ver-
sioning system can be used as a design support tool
during the exploration phase, especially in collabo-
rative environments where options are generated in
parallel. Four features of a versioning system: com-
mitting, differentiating, branching, andmerging, had

been discussed on how it could be implemented in
a parametric modelling environment. A pilot study
with GHShot Grasshopper plugin and 5 student de-
signers revealed positive responses despite the short
one-hour testing. Parametric modelling versioning
system has the potential to provide a clear progres-
sion of design progress (especially for design docu-
mentation andpresentation), to alloweaseof sharing
and thus faster feedback and iteration process in a
collaborative environment. In additional, parametric
model progression visualisation and analytics could
give better insight and navigation of the whole de-
sign process.

Finally, we are reminded that both software de-
sign and architectural design are of different worlds.
Architectural design often has ambiguity and needs
interpretation (Vardouli, 2014). In this work, we es-
sentially tap on the fact that parametricmodels share
explicit externalisation (Aish andWoodbury, 2005) - a
similar trait to source code. Andhopefully, in the long
run, with versioning system, ‘transparency in infor-
mation architecture’ (Hirschberg, 2003) could be cap-
tured, and hence, in the long run, the empirical data
(design) captured could contribute to design process
improvement. Future works involve releasing our
plugin to food4Rhino, a Grasshopper plugin reposi-
tory, to receive feedback from thewider Grasshopper
community.

REFERENCES
Aish, R 2000 ’, Collaborative Design using Long Transac-

tions and “ChangeMerge”’, Proceedingsof eCAADe18
Aish, R and Woodbury, R 2005 ’Multi-level interaction

in parametric design’, International symposium on
smart graphics, pp. 151-162

Burry, J and Holzer, D 2009 ’). Sharing design space: Re-
mote concurrent shared parametric modeling’, Pro-
ceedings of the 27th eCAADe, pp. 333-340

Cristie, V and Joyce, SC 2017 ’Capturing And Visual-
ising Parametric Design Flow Through Interactive
Web Versioning Snapshots’, IASS Annual Symposium,
Hamburg, Germany

Cristie, V and Joyce, SC 2018 ’GHShot: 3D Design Ver-
sioning for Learning and Collaboration in the Web’,
Extended Abstracts of the 2018 CHI Conference on

Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3 - eCAADe 37 / SIGraDi 23 | 43



Human Factors in Computing Systems, Montreal, p.
LBW107

Davis, D 2013, Modelled on software engineering: Flexi-
ble parametric models in the practice of architecture.,
Ph.D. Thesis, RMIT

Davis, D, Burry, J and Burry, M 2011, ’Understanding vi-
sual scripts: Improving collaboration through mod-
ular programming’, . International Journal of Archi-
tectural Computing, 9(4), pp. 361-375

Dijkstra, EW 1972, ’The humble programmer’, Commun.
ACM, 15(10), pp. 859-866

Hirschberg, U 2003, ’Transparency in information archi-
tecture: Enabling large scale creative collaboration
in architectural education over the Internet’, Interna-
tional journal of architectural computing, 1(1), pp. 12-
22

Hunt, JW and McIlroy, MD 1976 ’An algorithm for dif-
ferential file comparison’, Bell Telephone Laboratories
CSTR #41

Huo, M, Verner, J and Babar, MA 2004 ’Software quality
and agile methods’, In Computer Software and Appli-
cations Conference, pp. 520-525

Brooks Jr, FP 1995, The Mythical Man-Month: Essays on
Software Engineering, Pearson Education India

Pena De Leon, A 2014, Separation of concerns: strategies
for complex parametric design modelling, Ph.D. The-
sis, RMIT

Muscettola, V, Salvi, M, Mutyaba, M, van der Hei-
jden, R, Tai, A and Levelle, E 2017 ’The Mor-
pheus Hotel: From Design to Production’,
www.rhino3d.com/go/morpheus

Rittel, HWandWebber, MM1973, ’Dilemmas in a general
theory of planning’, Policy Sciences, 4(2), pp. 155-169

Rochkind,MJ1975, ’The source codecontrol system’, IEEE
transactions on Software Engineering, 4, pp. 364-370

Sakai, Y and Tsunoda, D 2015 ’Decentralized Version
Control andMassCollectiveCollaboration indesign-
A Case Study of a Web Application Utilizing the Diff
Algorithm and Automated Design Generation’, Pro-
ceedings of eCAADe 33, pp. 207-214

Smith, R 2007 ’Technical Notes from ex-
periences and studies in using Para-
metric and BIM architectural software’,
http://www.vbtllc.com/images/VBTTechnicalNo
tes.pdf

Valdez, MEP 1988, A gift from Pandora’s box: The software
crisis, Ph.D. Thesis, University of Edinburgh

Vardouli, T and Buechley, L 2014 ’Open source architec-
ture: an exploration of source code and access in ar-
chitectural design’, Leonardo 47(1), pp. 51-55

Verina, C and Joyce, SC 2018 ’GHShot: 3D Design Ver-

sioning for Learning and Collaboration in the Web’,
Extended Abstracts of the 2018 CHI Conference

Wang, L, Janssen, P and Ji, G 2019 ’ProgressiveModelling
for Parametric Design Optimization’, Proceedings of
the 24th CAADRIA, pp. 400-409

Woodbury, R 2010, Elements of Parametric Design, Rout-
ledge

Woodbury, R, Mohiuddin, A, Cichy, M and Mueller, V
2017, ’Interactive design galleries: A general ap-
proach to interacting with design alternatives’, De-
sign Studies, 52, pp. 40-72

Wortmann, T and Tuncer, B 2017, ’Differentiating para-
metric design: Digital workflows in contemporary
architecture and construction’, Design Studies, 52,
pp. 173-197

Zaman, L, Stuerzlinger, W and Neugebauer, C 2017
’MACE: A New Interface for Comparing and Editing
of Multiple Alternative Documents for Generative
Design’, Proceedings of the 2017 ACM Symposium on
Document Engineering, pp. 67-76

[1] https://www.food4rhino.com/app/autograph
[2] https://discourse.mcneel.com/t/whats-your-largest-
grasshopper-script-the-hall-of-shame/60594
[3] https://bimportal.scottishfuturestrust.org.uk/level1/
stage/8/task/47
[4] https://git-scm.com/
[5] https://github.com/
[6] https://github.com/search?l=&o=desc&q=followers:
%3E-1&ref=advsearch&s=joined&type=Users

44 | eCAADe 37 / SIGraDi 23 - Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3


