Steps towards Al

augmented parametric modeling

systems for supporting design exploration

Varvara Toulkeridou!
! Carnegie Mellon University
atou@cmu.edu

Dataflow parametric modeling environments have become popular as
exploratory tools due to them allowing the variational exploration of a design by
controlling the parameters of its parametric model schema. However, the nature
of these systems requires designers to prematurely commit to a structure and
hierarchy of geometric relationships, which makes them inflexible when it comes
to design exploration that requires topological changes to the parametric
modeling graph. This paper is a first step towards augmenting parametric
modeling systems via the use of machine learning for assisting the user towards
topological exploration. In particular, this paper describes an approach where
Long Short-Term Memory recurrent neural networks, trained on a data set of
parametric modeling graphs, are used as generative systems for suggesting
alternative dataflow graph paths to the parametric model under development.

Keywords: design exploration, visual programming, machine learning

INTRODUCTION

Exploring multiple design alternatives is an integral
part of the early design process. Dataflow paramet-
ric modeling environments have gained a general ap-
preciation as exploratory tools due to them allow-
ing variations of a design to be explored by adjusting
the parameters of its parametric model schema. The
parametric modeling environments that extend our
CAD tools are employing the single state model of in-
teraction (Terry and Mynatt 2005), therefore typically
these design variations are being accessed sequen-
tially.

To streamline the sampling of the design space
defined by a parametric model schema and support
the comparison of these design alternatives in paral-
lel, both industry and academia have been exploring
parameter based interfaces (Mohiuddin et al. 2017,

Design - GENERATIVE SYSTEMS - Volume 1 - eCAADe 37 / SIGraDi 23 | 81

Tomasetti 2017, Autodesk 2018). These interfaces ex-
tend such parametric modeling systems and provide
automatic mechanisms for generating and visually
juxtaposing design variations. Via these mechanisms
searching into the design space defined by the para-
metric model schema and evaluating the variational
alternatives becomes more accessible.

Even though such parametric modeling systems
facilitate variational exploration, they are not flexi-
ble when it comes to working on a design alternative
that involves changing the parametric model struc-
ture (Chaszar and Joyce 2016). To build a paramet-
ric model, designers need to prematurely commit
to a structure and hierarchy of geometric relation-
ships and data structures, which is hard to alter dur-
ing the design process. The cognitive load for mak-
ing changes to the topological structure of the para-



metric model schema is big and in many cases, one
would need to build the model from scratch (Holzer
etal 2008, Turrin and Stouffs 2011). Therefore design-
ers can easily become locked-in (Harding and Shep-
herd 2017) working on a specific parametric model
schema and not attempt to explore different concep-
tual design alternatives.

The research reported here takes the view that
if it is to envision our parametric modeling systems
as design exploration tools, they should support
designers beyond just variational exploration. To-
wards this direction, this research investigates how
dataflow parametric modeling systems can be aug-
mented to assist designers in considering alternative
paths during the process of developing a paramet-
ric model. The strategies of backup, recall and replay
which traditionally drive forward the designer’s ex-
ploration action (Woodbury and Burrow 2006) are be-
ing revisited and reimagined via the use of machine
learning models; the objective is to employ the com-
putational system with the ability to suggest ways to
the designer for expanding the design space under
consideration.

In particular, Long Short-Term Memory (LSTM)
neural networks are being proposed as a model capa-
ble of learning order dependence and spatial struc-
ture of parametric modeling directed acyclic graphs
(DAGs). Once the network is trained, it can serve as
a generative system for synthesizing new sequences
of nodes based on an arbitrary input node sequence.
The scope of this paper is to evaluate the potential of
this approach. It is the first step towards the bigger
vision of computationally supporting designers on
investigating alternative parametric model schemas
that could potentially perform better in terms of their
set criteria and requirements.

First, exploration in the context of dataflow para-
metric modeling systems is defined as the transfor-
mation of the DAG's design space description; rele-
vant precedent work on design space expansion is
presented. Next, the process of training a machine
learning model on a dataset of collected graphs, and
using the trained model as part of a graph synthesis

system for transforming the design space description
of the graph is described. The potential of the ma-
chine learning model to learn structural information
from previously created graphs and used as a synthe-
sis tool is discussed. The paper concludes by high-
lighting future steps and improvements.

RELATED WORK

Design space is the network of the possible states a
design can take. A parametric modeling graph de-
fines a design space out of the combinations of the
graph’s input parameters. The geometry and numer-
ical primitive units, the topological relationships and
constraints, the manipulative functions, as well as
the parameter ranges, formulate the description of
the design space of the parametric model schema.
Due to the structured nature of a parametric model
schema, as the graph evolves, the description of its
design space becomes fixed, a closed system inflexi-
ble to adapt to changing requirements.

When all variables and their relationships are de-
fined a priori, the interaction with the design space
is simply a search to determine feasible, satisfying or
optimal parameter values (Gero 1994). Design, how-
ever, cannot be simply assisted by a search process; at
any point, changing requirements and goals may in-
dicate a different design space to be searched. There-
fore, computationally assisted exploration needs to
involve the process of determining the space within
which to search, either by creating new design state
spaces or by modifying existing ones (Gero 1994).
Gero (1994) proposes that this can be accomplished
by creating new symbols out of prior ones by way of
addition, substitution or evolutionary combination.

Engineering design demonstrates research work
around design space expansion via addition or sub-
stitution of new variables and features. Domain-
specific heuristics are typically used to control the
process of modifying the models or representations
of a design (Aelion et al 1992). Cagan et al (1991),
for example, use a library of predefined design space
expansion techniques as the means for modifying
the design topology and discovering innovative solu-

82| eCAADe 37/ SIGraDi 23 - Design - GENERATIVE SYSTEMS - Volume 1



tions. The suggested methodology assumes a knowl-
edge representation of the design problem based on
the basic, primitive propositions and assumptions.
The expansion techniques are defined as mathemat-
ical operations to manipulate the knowledge repre-
sentation of the problem. Optimization is used to
decide which expansion technique may lead to im-
proved designs. In a similar direction, Gero and Ku-
mar (1993) demonstrate how feasible or improved
solutions can emerge by introducing new design
variables to optimization problems that due to con-
flicting constraints have no feasible solutions.

In the cases mentioned above, the design space
description of the problem is already fixed. The
methods for mutating or augmenting this design
space are also a priori defined and opinionated to-
wards specific ways of solving a particular class of
problems. To make such approaches more generic,
Gero and Kumar (1993) propose the use of analogical
reasoning - finding precedents of similar past design
cases and choosing variables from those cases to ex-
pand the design space under consideration.

Research work from the data visualization do-
main demonstrates relevant efforts particularly tar-
geted to visual programming environments. Sys-
tems for creating visual programming pipelines for
data exploration assist users in the process of con-
structing new pipelines by reusing pipeline data
from a database of previously created visualization
pipelines. Pipeline fragments can be used as tem-
plates to query the database, locate, and merge rele-
vant pipelines that match certain criteria (Scheideg-
ger et al 2007). Also, given a partial pipeline un-
der development, sets of likely pipeline additions
can be predicted by computing correspondences be-
tween existing pipeline subgraphs from the database
(Koop et al 2008). These approaches show poten-
tial towards assisting users considering wider design
spaces or modifying existing ones, however, they
are based on matching exact precedents from the
database.

Falling into the category of design space ex-
pansion via evolutionary combination, Harding and

Design - GENERATIVE SYSTEMS - Volume 1 - eCAADe 37 / SIGraDi 23 | 83

Shepherd (2017) developed an approach they call
meta-parametric design. They propose automating
the synthesis of directed acyclic graphs for paramet-
ric models - based on Cartesian Genetic Program-
ming - as a way to widen the exploration of differ-
ent design concepts. A graph is represented by an
integer-encoded string that includes all its numeric,
functional, and topological information. This string
representation constitutes the genotype for an evo-
lutionary algorithm that via mutation and crossover
drives the automated generation of graphs. The lim-
itation of this approach arises from the fact that the
user needs to decide a priori what components will
be used. This choice determines the geometry vo-
cabulary available to the algorithm and therefore di-
rects the type of results achieved. Also, the generator
produces graphs of higher complexity than manually
built models; due to the lack of abstraction, they are
inefficient and not easily readable by humans (Joyce
etal 2017).

SYNTHESIZING DATA DRIVEN COMPLE-
TIONS
In a parametric modeling graph, nodes represent
computational functions, let’s call them modules,
and edges represent how data flows through the
modules. More formally, a parametric modeling
graph is a directed acyclicgraph G = (V, E) where
V' consists of a set of modules and E is a set of con-
nections between modules in V. A module is an
object that contains a set of input and output ports
through which data flows in and out of the module.
A connection between two modules v, and vy, con-
nects an output port of v, to an input port of v,
Given this context, the problem of deriving par-
tial completions for the graphs can be defined as fol-
lows. Given a partial graph (subgraph) H we wish to
find a set of completions that reflect the node struc-
tures that exist in a collection of completed graphs.
The completions comprise a sequence of nodes that
can be connected to each other in a meaningful way
both syntactically and semantically. VisComplete
(Koop et al 2008) proposed a solution to this prob-



lem by using exact templates from the training data
to make predictions, by counting exact matches be-
tween the recent history and the data set. This pa-
per's approach, on the other hand, involves a ma-
chine learning model that uses its internal represen-
tation to perform a high-dimensional interpolation
between training examples. The objective is that
the model synthesizes and reconstitutes the training
data in a complex way with the possibility for node
sequences to emerge that do not necessarily exist in
the dataset.

Long Short-Term Memory (LSTM) recurrent neu-
ral networks are trained on a data set of previously
created graphs and are used as generative systems
for suggesting alternative dataflow graph paths to
the parametric model under development. LSTMs
are widely used for natural language processing hav-
ing been proven capable of learning order depen-
dence and spatial structure of text. This work em-
ploys methods used for training LSTM networks for
text generation (Graves 2013, Sutskever et al 2011)
and approaches that generalize these methods from
sequences of words to graphs (Perozzi et al 2014).
It adopts these methods to the case of directed
acyclicgraphs (DAGs), the representation used by our
dataflow parametric modeling environments.

The prototype system consists of three compo-
nents a) the data parser component, which con-
verts the graphs from the training dataset to se-
quential data, b) the trainer component, which is
responsible for the training process of the neural
network, and c) the synthesizer component, which
queries the trained model and performs topological
changes, node, and link additions, to the directed
acyclic graph. Figure 1 displays an overview diagram
that demonstrates the process involved in each com-
ponent. They will be described in more detail in the
following sections.

Parsing graphs to sequential data

Like any other CAD tool, a parametric modeling visual
programming environment is a system that employs
computational mechanisms to effect change. While

building a parametric modeling graph, the progres-
sive addition of nodes produces new spatial objects
or changes to spatial objects by manipulative opera-
tions like arithmetic operations and geometrical op-
erations. The sequence of spatial changes is continu-
ous (Krishnamurti and Stuffs 1996); with every node
addition, we derive a new spatial object from a given
object. Therefore every manipulative operation is de-
pendent on the history of operations and the struc-
ture and hierarchy developed so far in the graph. This
fact highlights the need for learning generative mod-
els over graphs that can capture their relational struc-
ture and order dependence.

Recurrent neural networks (RNNs) are a class of
such models that can be trained for sequence gen-
eration. RNNs contain cycles that feed the network
activations from a previous time step as inputs to the
network to influence predictions at the current time
step. This adds “memory” to the network that allows
it to learn the ordered nature and relationships of the
sequential input data. We are using a specific type
of RNN architecture, called Long Short-Term Mem-
ory (LSTM) designed to be better at learning long-
range structure than standard RNNs (Hochreiter and
Schmidhuber 1997).

An important challenge we need to address is
designing an invertible way of converting a paramet-
ric modeling graph structure to a sequential repre-
sentation (linearization); this way we can treat se-
quences as sentences in natural languages and use
the LSTM language models and methodology. There
is a significant amount of work from the natural lan-
guage processing and program synthesis commu-
nity. For example, Vinyals et al. (2014) flattened a
tree into a sequence following a depth-first traver-
sal order and then modeled parse tree generation
as a sequence to sequence task. Other efforts use
more domain-specific linear representations as fin-
gerprints to represent graphs (Gomez-Bombarelli et
al 2018). For this first iteration of our experiment, we
parse the graph into all possible linear paths of nodes
and we model the problem as a sequence to predic-
tion task. Given a corpus of examples of linear paths

84 | eCAADe 37/ SIGraDi 23 - Design - GENERATIVE SYSTEMS - Volume 1



Figure 1
Overview diagram.

DYNAMO GRAPH FILES

LINEARIZATION

[number, point, circle, watch],
[number, point, circle, extrude, area],
[number, point, circle, watch],

[number, point, circle, extrude, area),

[number, circle, watch], / |
[number, circle, extrude, area], oo o000
[number, extrude, area] \ l

SEQUENCE CLEAN UP
removal of outlers &
duplicate sequences

[number, point, circle, extrude, area),
[number, circle, extrude, area],
[number, extrude, area]

TRAINING DATA PROCESSING

extracted from a data set of existing parametric mod-
eling graphs, generate new sequences of nodes that
have the structural properties of the corpus. Our se-
lected approach for how to synthesize back the pre-
dicted sequences into the graph structure will be ex-
plained in the following section.

Model architecture and training
An LSTM neural network is a kind of recurrent neu-
ral network with a recurrent, hidden layer of mem-
ory blocks (Hochreiter and Schmidhuber 1997). Each
memory block contains several self-recurrent linear
memory cells. The self-recurrence on each cell en-
ables it to accumulate numerical values over a series
of iterations of the network. The accumulated data is
passed through a nonlinear function. Each block con-
tains three gated sigmoid units and can regulate the
flow of information. These gates can learn which data
in a sequence is important to keep or discard; this
way the relevant information is being passed down
the long chain of sequences to make predictions. The
complete equations for the LSTM network are be-
yond the scope of this paper.

The network consumes the sequence of nodes in

Design - GENERATIVE SYSTEMS - Volume 1 - eCAADe 37 / SIGraDi 23 | 85

INTEGER
ENCODING

-]

LSTM MODEL SERVER
@ python

ONE HOT
ENCODING

0
0
0
1

(2) HTTP Get (3) Response
predictions

(5) Synthesizing step
EMBEDDING iterative sampling
LAYER

SYNTHESIZER

Dynamo View Extension

/

EMBEDDING
VECTORS

l / B Dynamo
LST™M
(1) select

40
OUTPUT layer

LSTM MODEL TRAINING PROCESS

) (4) select
anchor node predicted path
! @

MODEL SERVING AND SYNTHESIZING

a left-to-right sweep, creating one-hot encoded vec-
tors in memory; these vectors are high-dimensional
and sparse. In our training set, we have 600 unique
nodes; this means that, when using one-hot encod-
ing, each node will be represented by a vector con-
taining 600 integers. In order to do this computation-
ally more efficient and to have the network learn sim-
ilarities between nodes, we use an embedding layer
(Mikolov et al 2013). This allows us to capture re-
lationships in the graph structure that are very dif-
ficult to capture otherwise. The use of the embed-
ding layer helps the network learn a representation
of nodes in which nodes that tend to appear adjacent
to each other are closer in the vector space.

To summarize, the network architecture com-
prises 3 layers: a) An embedding layer that maps the
discrete representation of a node, i.e. the one-hot en-
coded vector, to a semantic representation, b) This
semantic representation is then fed to an LSTM layer
which generates a state based on the previous state
and currentinput. This combination of the states pro-
vides the context to our model, and c) A layer that
maps this generated state to a set of probabilities.
We train two separate models, one feeding the in-



put sequences of nodes in a left-to-right sweep and
one feeding them backward; this way we can retrieve
predictions for downstream and upstream nodes re-
spectively.

Generating suggestions

During graph derivation, the synthesizer component
adds new structure to the existing graph, specifi-
cally a new node, and the probability of that addition
event depends on the history of the graph deriva-
tion. We train the model as a predictive model, but
we use it as a generative model to generate entirely
new plausible sequences of nodes. The predictions
are probabilistic; novel sequences can be generated
from the trained network by iteratively sampling
from the network’s output distribution, then feeding
in the sample as input at the next step. Although the
network itself is deterministic, the stochasticity in-
jected by picking samples induces a distribution over
sequences. Since the internal state of the network
depends on the previous inputs, the final distribution
obtained is conditioned upon the previous inputs as
well.

Each synthesizing step generates a downstream
sequence of three nodes by querying the model
trained on forward sequences. In each iteration, a
new downstream node is added and linked to the
anchor node. If there are available input ports on
the newly added node, then the system queries the

model trained on the backward sequences. The iter-
ation completes when the newly added node is des-
ignated as the new anchor node (Figure 2). For ev-
ery request for a downstream prediction, all linear
paths that the upstream graph that leads to the an-
chor node can be parsed into, are taken into account.
Similarly, for every upstream prediction request, all
downstream graph paths are taken into account.
Let's take a closer look at how the system synthe-
sizes the predictions for the sequences into a node
prediction that reflects the graph structure. Given
a parametric modeling directed acyclic graph G we
want to know which next node could be a possi-
ble addition to progress the series of spatial trans-
formations. We can express the probability of an in-
coming node addition as P(n|G). The question is
how can we express this in a computationally feasi-
ble manner. To accomplish this, we consider a sim-
plified base case. Let’s denote any of the leaf nodes
of the graph (nodes that do not have any succes-
sors) as our anchor node; we are seeking the next
node that is a possible addition to that anchor node.
Next, we consider the upstream subgraph that leads
to this anchor node and we create the set of node se-
quences that form all possible directed paths P =
{p1,Dp2, .. pn} thatlead to the anchor node. Given
the set of upstream paths, the probability of a single
node is the measure of how likely it is that node to
show up, given the upstream paths. To compute the

- Predict downstream node given:
S={(ab,c),(ac}
- Add predicted node d and link

ANCHOR

- Are there available input ports on d?
[ 1[NO]

- while available input port on d:
- Predict upstream node given:
S={(@a,b,c.d),(acd}
- Add predicted node e and link —

) =GR CHh >
< e} {<}
T>G E B {4} =3 )

- Predict downstream node given
S={(a b,c,d),(ac,d), (e d}
- Add predicted node g and link

ANCHOR

Are there available input ports on g?
[YES][NO]

DCHE} S > CHER
< Lo
3 (=} 3

- Predict downstream node given:
S={(a,b,c.d g)(acdaq),ledaqg)} [YES][ ]
- Add predicted node m and link

Are there available ports on m?

86 | eCAADe 37/ SIGraDi 23 - Design - GENERATIVE SYSTEMS - Volume 1

Figure 2

Graph derivation
during a
synthesizing step of
3 iterations.



likelihood of a single node we need to take into ac-
count the information given by all upstream paths. In
other words, the probability of an incoming node can
be expressed as the joint probability of all upstream
node sequences:

P(n|p1,p2,...-pn) (1)
The formula is commonly used to describe graphs
in the bayesian world. For the need of this paper,
we make a simplifying assumption that the upstream
paths are independent of each other. This reduces
our expression to:

P(nlp1,p2, ...
)]

Implementation

The data parser component is an executable that
runs Autodesk’s Dynamo® headless (without loading
the graphical user interface) to load each Dynamo
file, parse the in-memory graph data structure of
each model, and extract all graph linear paths. The
training data set comprises Dynamo graphs aggre-
gated from the web; most of them include example
workflows, training material and samples from the
Dynamo Primer and Dynamo Dictionary repositories.
The parsing process resulted in a training set of 6500
node sequences. The sequence size varies between
2 and 32 nodes.

The trainer component is developed using the
Keras API running on top of TensorFlow®. As men-
tioned above two models are being trained, one us-
ing the extracted linear paths and one using the same
paths in the reverse direction. Each training run took
22 minutes on an NVIDIA Tesla K80 GPU processor.

The synthesizer component consists of two
parts: the server, that serves the two trained models
and the synthesizer client. The server listens for pre-
diction requests from the client, queries the trained
models and returns a response to the client. The
body of a request contains the set paths for which
a downstream or upstream node is requested. The
body of the response contains a mapping of each

Design - GENERATIVE SYSTEMS - Volume 1 - eCAADe 37 / SIGraDi 23 | 87

pn) o< P(nlp1)P(nlp2) ... P(n|pn)

node to the combined probability given the set of
paths. The synthesizer client is an add-on to Au-
todesk’s Dynamo® developed as a View Extension,
which sends requests for downstream or upstream
node predictions to the model server. The synthe-
sizer client provides the ability to the user to desig-
nate a node as the anchor node for the synthesiz-
ing step. The moment the user selects an anchor
node the system automatically returns a list of pos-
sible paths and populates the predictions list on the
synthesizer client window. When the user selects a
path, a synthesizing step takes place and the gener-
ated nodes and links are added to the Dynamo editor
by the synthesizer client.

INITIAL RESULTS

The described work is a first step towards the bigger
objective of augmenting parametric modeling sys-
tems towards design exploration. The goal was to
evaluate whether the proposed approach and in par-
ticular, describing parametric modeling graph syn-
thesis as a sequence prediction problem, is plausi-
ble. Initial tests using the synthesizer system with the
trained models have been positive, although there
is still much work to be done to understand the po-
tential use of this method and its applications. We
believe that this work can inspire the application of
machine learning to research related to design space
expansion and content creation in the context of our
parametric modeling environment.

Overall, the model has demonstrated success-
ful results in learning order dependence and graph
structure. In most of the cases, the predictions are
semantically and syntactically meaningful. Note that
the focus at this point is not to evaluate whether we
can get complete recommendations for design ideas.
This is meant for future work and requires a system
capable of goal-oriented predictions and sampling.
Also, the quality of the predictions is largely depen-
denton the training dataset; a curated training graph
data set of bigger complexity and theme consistency,
for example, is expected to yield better results.

The examples in Figure 3 demonstrate the be-



Geometry.Translate.
GeometryColor 8yGeometn
List Create.
Surface Getisoline
PanelPoneiQuad

next path predictions for
anchor node: Surface.ByLoft

List Create
UstFiterByBoolMask
Curve PointAtparameter
Surface BySweep2Rals
ListTranspose

next path predictions for
anchor node: Curve.PointAtParameter

P | X
change seed-node

ListTranspose
LstGettemAtindex
PolyCurve ByPoints

Line ByStartPointEndpoint
ListRestOfltems

next path predictions for
anchor node: List Shiftindices

gréph components added by user

when user selects path: Panel.PanelQuad

. generated by the Synthesizer (one step)
when user selects path: Surface.Getlsoline

generated by the Synthesizer (one step)

CunveLength
Watch 30

next path predictions for
anchor node:

Line.ByStartPointEndPoint

rmalized

fi""
5 SR Ve, [ \

&

;
;
;

geometry > Geometry|
x > POINt bt origin >
i il > s >
z > degrees >
o o om0 st

Vector

Q) 552 | I >

generated by the Synthesizer (one step)
When user selects path: Curve.Extrude

88| eCAADe 37/ SIGraDi 23 - Design - GENERATIVE SYSTEMS - Volume 1

Figure 3

Examples of a
synthesizing step.
On the left of each
graph, the
synthesizer’s client
window displays a
list of possible
paths given the
designated anchor
(node in purple).
The values of
automatically
added input nodes
(numbers and
sliders) were set by
the author after the
synthesizing step.



Figure 4

Predicted
downstream nodes
for the same anchor
node given
different upstream
context.

havior of the system. Each example shows a synthe-
sizing step. For each synthesizing step, the synthe-
sizer client performs 3 iterations. In each iteration,
the forward model is being queried for adownstream
node prediction and the backward model for an in-
put node prediction if the predicted downstream
node has input ports available. Example a shows two
alternative paths for the same upstream partial graph
and designated anchor node. Example b showcases
the ability of the system to synthesize data in com-
plex ways that do not necessarily show up in the
training dataset. The system links Curve.Extrude to
the existing Line.ByStartPointEndPoint; this is a novel
sequence that the system has not been trained on
and is a meaningful sequence both semantically and
syntactically.

Figure 4 demonstrates the system being success-
ful in learning order dependence and context. The
transformative operations in the two graphs are the
same, but while the upper graph manipulates a sin-
gle generated rectangle, the lower one manipulates
a list of rectangles. The returned predictions, given
Curve.ExtrudeAsSolid as the anchor node, show that
the system has learned to identify such a contextual
difference. In the case of the list of rectangles, the
system suggests mostly downstream nodes that cor-
respond to list operations.

FUTURE WORK
There is much potential for development and im-
provements. These include the following:

Number Slider
® 205 ] > width >
length >
[/ -
©|763 >
[15.000| >
1; | > ot start > seq T width >
10; | > b—— end > length >
£ L —~— step > Ao

15.000 | >

Design - GENERATIVE SYSTEMS - Volume 1 - eCAADe 37 / SIGraDi 23 | 89

Rectangle e curve

Rectangle b curve > Solid

« Linearizing the graph to node sequences re-
quires the additional work of merging the
predictions for the different paths back to-
gether to form the graph structure. Ideally, we
would prefer a linear representation that re-
flects the graph structure as a whole. Other
linearization approaches from the machine
learning literature, like depth-first traversal or-
der (Vinyals et al 2014) or topological sorting
of the graph (Li et al 2018) are worth investi-
gating further.

- A training sequence is composed of integer
identifiers corresponding to the node names.
The model learns node to node dependency
but no output to input port dependency.
Therefore the synthesizer component adds
links between existing and predicted nodes
by trial and error. Incorporating information
about input and output ports in the training
sequence can improve the syntactic and se-
mantic consistency of the predictions and im-
prove the synthesizing process.

+ Synthesis occurs at the node level; this makes
it more challenging to lead the generation
towards an objective. Experimenting with
different degrees of decomposition of the
graphs and a more modular approach could
be beneficial. For example, each data point
in the input sequence could maintain more
functionality, i.e. a set of nodes that are se-
mantically related. This way, less potential

Curve.ExtrudeAsSolid
>

Solid

distance >

Solid

Curve.ExtrudeAsSolid

distance




for variation is afforded, however, less work
is required for correct semantic and syntactic
matching.

REFERENCES

Aelion, V, Cagan, J and Powers, GJ 1991 'Input Variable
Expansion: a formal innovative design generation
technique; Technical Report, pp. 1-20

Autodesk, Inc 2018 'Refinery Project, www.autodesk.com/
solutions/refinery-beta

Cagan, J and Agogino, AM 1991, 'Dimensional Variable
Expansion: A formal approach to innovative design;
Research in Engineering Design, 3(2), pp. 75-85

Chaszar, A and Joyce, SC 2016, ‘Generating freedom:
Questions of flexibility in digital design and architec-
tural computation; International Journal of Architec-
tural Computing, 14(2), pp. 167-181

Gero, JS 1994 'Towards a model of exploration in
computer-aided design, Workshop on Formal Design
Methods for CAD, pp. 315-336

Gero, JS and Kumar, B 1993, ‘Expanding design spaces
through new design variables; Design Studies, 14(2),
pp. 210-221

Gomez-Bombarelli, R, Wei, JN, Duvenaud, D, Hernandez-
Lobato, JM, Sanchez-Lengeling, B, Sheberla, D,
Aguilera-lparraguirre, J, Hirzel, TD, Adams, RP and
Aspuru-Guzik, A 2018, ‘Automatic chemical design
using a data-driven continuous representation of
molecules, ACS Central Science, 4(2), pp. 268-276

Graves, A 2014 '‘Generating sequences with Recurrent
Neural Networks, arXiv preprint arXiv:1308.0850v5,
pp. 1-43

Harding, JE and Shepherd, P 2017, 'Meta-Parametric De-
sign; Design Studies, 52, pp. 73-95

Hochreiter, S and Schmidhuber, J 1997, ‘Long Short-
Term Memory;, Neural Computation, 9(8), pp. 1735-
1780

Holzer, D, Hough, R and Burry, M 2016, ‘Parametric de-
sign and structural optimisation for early design ex-
ploration; International Journal of Architectural Com-
puting, 5(4), pp. 625-643

Joyce, SC and Nazim, | 2017 'Exploring the evolution of
meta parametric models, 37th Annual Conference of
the Association for Computer Aided Design in Architec-
ture, pp. 308-317

Koop, D, Scheidegger, CE, Callahan, SP, Freire, J and Silva,
CT 2008, 'VisComplete: Automating suggestions for
visualization pipelines, IEEE Transactions on Visual-
ization and Computer Graphics, 14(6), pp. 1691-1698

Krishnamurti, R and Stouffs, R 1997, ‘Spatial change: con-
tinuity, reversibility, and emergent shapes; Environ-
ment and Planning B: Planning and Design, 24(3), pp.
359-384

Li, Y, Vinyals, O, Dyer, C, Pascanu, R and Battaglia, P 2018
‘Learning deep generative models of graphs, arXiv
preprint arXiv:1803.03324v1, pp. 1-22

Mikolov, T, Corrado, G, Chen, Kand Dean, J 2013 'Efficient
estimation of word representations in vector space;
arXiv preprint arXiv:1301.3781v3, pp. 1-12

Mohiuddin, A, Woodbury, R, Ashtari, N, Cichy, M and
Mueller, V 2017 ‘A Design Gallery system: Prototype
and evaluation; 37th Annual Conference of the Asso-
ciation for Computer Aided Design in Architecture, pp.
414-245

Perozzi, B, Al-Rfou, R and Skiena, S 2014 'DeepWalk: On-
line learning of social representations, the 20th ACM
SIGKDD international conference, New York, New
York, USA, pp. 701-710

Scheidegger, C, Vo, H, Koop, D, Freire, J and Silva, C
2017, 'Querying and creating visualizations by anal-
ogy, IEEE Transactions on Visualization and Computer
Graphics, 13(6), pp. 1560-1567

Sutskever, |, Vinyals, O and Le, QV 2014 'Sequence to se-
quence learning with neural networks, Proceedings
of the 27th International Conference on Neural Infor-
mation Processing Systems, Montreal, Canada, pp. 1-
9

Terry, M, Mynatt, ED, Nakakoji, K and Yamamoto, Y 2004
'Variation in element and action: Supporting simul-
taneous development of alternative solutions; Pro-
ceedings of the SIGCHI Conference on Human Factors
in Computing Systems, New York, New York, USA, pp.
711-718

Thornton Tomasetti, C.S. 2017 'Design explorer;, http://tt-
acm.github.io/DesignExplorer/

Turrin, M, von Buelow, P and Stouffs, R 2011, ‘Design ex-
plorations of performance driven geometry in archi-
tectural design using parametric modeling and ge-
netic algorithms; Advanced Engineering Informatics,
25(4), pp. 656-675

Vinyals, O, Kaiser, L, Koo, T, Petrov, S, Sutskever, |
and Hinton, G 2015 ‘Grammar as a foreign lan-
guage, Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems, Mon-
treal, Canada, pp. 2773-2781

Woodbury, R and Burrow, A 2006, 'Whither design
space?, Al EDAM: Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 20(02), p. 63-82

90 | eCAADe 37/ SIGraDi 23 - Design - GENERATIVE SYSTEMS - Volume 1



