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Abstract  
This study is based on the development of a modeling technique for vault-like structure 
generation through topological manipulation. Currently, topology-driven form-finding has been 
implemented in tensile structures, but no further studies have been conducted for 
compression-only structures. The focus of this study is to approach the problem of highly 
determined vault shapes by their input topology. The technique operates at the topological 
level between vertices and edges to create an input 2D topology map. The particle-spring 
system uses such a map to simulate the resulting 3D mesh geometry. For testing purposes, 
we explore three generative approaches. The results show the effectiveness of the technique 
to manipulate the topological relationships that controls the generation of the funicular 
structures.

Keywords: Form-finding; Funicular; Particle-spring system; Design space; Topology.

INTRODUCTION
Funicular shapes are those made by a catenary chain 
determined by a fixed amount of weights (Addis, 2014). 
Catenary chains are enabled to design vault-like structures 
by Robert Hooke’s Law of Inversion. Since the term 
funicular means only tension or only compression this 
principle can be directly applied to generate structures 
(Kilian & Ochsendorf, 2005). Under ideal conditions, forces 
through a vault-like structure must be axial, with minimal 
bending. The capacity of manipulating these structures in 
real-time during the design process enables designers to 
explore solutions from different configurations. This 
condition provides an enhanced exploratory nature of the 
form-finding method.

This study focuses on determining the correlation between 
the topological manipulation of an initial condition and the 
funicular vault shape resulting from Particle-spring System 
Simulation (PSS). Funicular forms are extremely restricted 
since its geometry is determined by gravity. Form-finding is 
the method for generating emergent forms from input data.
The recent implementation of form-finding techniques is 
based on the computational simulation of physical models, 
mainly considering geometrical properties.

Recent studies of topology-driven form-finding by Suzuki & 
Knippers (2017a, 2017b, 2017c) focus on tensile structures 
as they can be actively manipulated by modifying the 
structural behavior of the initial condition. However, there 
are no major studies related to funicular only compression 
vault-like structures. This kind of structure behaves 
passively under gravity load with no additional external 
forces. This means the initial condition before a simulation 
is what defines the possible design space. This study 
introduces a modeling technique to rationally manipulate 
the 2D input topology to induce the generation of 
tridimensional funicular structures.

1.1. PARTICLE-SPRING SYSTEM
Particle-spring System is a form-finding simulation 
technique that transforms an initial geometry under force 
load. This system is based on lumped masses (particles) 
and linear elastic elements (springs) that interconnect 
particles in space. Kilian and Ochsendorf proposed the 
utilization of this technique for finding structural forms
defined only by axial forces. Multiple applications started 
from 2005 onwards after the mentioned authors developed 
the software called CADenary. This software enables the 
user to modify forms, while continually reaching a state of 
equilibrium.

Several authors implemented design applications such 
as: structural network within a three-dimension boundary 
(Kanellos, 2007), ‘Form-responding’ variable depth 
technique (Clifford, 2012), post-formed wooden pavilion 
(Pone et al., 2013), set of funicular shapes for exploring 
new design forms (Bhooshan et al., 2014) and anisotropic
gridshell structure embedding digital fabrication (Naboni, 
2016). Regardless of the field of computation, structure, 
architecture, or construction), all of them require an initial 
condition to trigger the Particle-spring system simulation 
that defines the resulting shape.

1.2. TOPOLOGY-DRIVEN FORM FINDING
Geometric processes generate variations through dynamic 
manipulation of metric parameters without affecting the 
initial topologic conditions. Instead, Suzuki & Knippers 
state that topological processes enable differentiation 
through interactive adjustments in topological models. This 
study focuses on the restriction of the initial geometry for 
vault-like shape generation. Therefore, the concept of 
topology-driven form-finding is the basis of this study. At 
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present, Suzuki & Knippers implemented the topology-
driven form-finding concept in Bending-active tensile hybrid 
structures (BATH). The authors developed the software 
called ElasticSpace, and the case study for the AAVS 
Madrid Pavilion.

Other researchers approached topology manipulation to 
expand the space design implementing the use of digital 
tools. Deleuran et al. (2016), using the Kangaroo2 goals 
method studied the differentiation of forms based on a 
dynamic topological model. Additionally, Ahlquist et al. 
(2015) developed a computational environment called 
springFORM. This environment introduces the concept of 
‘metatopology’: a global topology configuration carrying 
local topological properties. The specified approaches 
focus on tensile structures actively allowing the 
manipulation of form. There are no further studies for vault-
like structures because the generated forms are 
determined by the initial topology.

To address this constraint, this methodology focuses on 
generating initial conditions to expand the early-stage 
design space. Since the vault-like structures are restricted 
to the initial condition configuration, this technique 
detaches the topological structure from the three-
dimensional geometry generation. The methodology 
proposes the following structure: the regular polygon input 
generation, the first set of topological manipulation based 
on the initial polygon, and the second set of topological 
operations based on vertices and edges. Once the 
application of all the topological operations occurs, the 
vertex configuration constructs a triangulated mesh. With a 
user-defined anchor point selection, a Particle-spring 
system simulation runs to generate a vault emergent 
shape.

METHODOLOGY
This study develops a generative technique based on 
primitive topological objects. The generative modeling 
technique does not represent a possible solution. On the 
contrary, it represents the design space understood as 
'explorable and exploitable potential' (Najle, 2004). The 
primitive topological objects are the vertex and edge. The 
configuration of these objects defines the initial condition 
geometry. Adding edges inside the geometry boundary 
generate discontinuity and subdivision. Adding vertices 
directly increases vertex count and implicit valency 
properties. The vertex set defines a point cloud to construct 
a mesh geometry using Delaunay triangulation. Also, the 
user can configure the anchor point set. Each step saves 
the topological information, allowing the algorithm to keep 
the links between the addition or the deletion of operations. 
The design space allows the study of the correlation 
between the initial condition and the Particle-spring system 
simulation result. Figure 1 illustrates the flow diagram of 
this study methodology, where function processes are 
represented with their expected partial results. 

2.1 INPUT GEOMETRY GENERATION: REGULAR N-
GON
The minimal input for this technique to perform is a regular 
n-gon polygon. The generation of the geometry is based on 
the equal subdivision of a circumference. If this input 
generation is simplified, it only needs a unique point/vertex 
and setting a radius. The minimum valid number of polygon 
sides is three, and the maximum number defined for this 
study is eight. 

Figure 1: Global process of geometry generation.

2.2. FIRST GENERATION OF TOPOLOGICAL 
OPERATIONS
This set of operations generates the first layer of 
differentiation between this process outputs and the first 
polygon. This set of operations consists of geometric 
manipulation by moving and scaling the polygon. For the 
topological description of this operation, boundary regions 
are operated as a Boolean union and intersection, 
producing the first-generation initial condition (Figure 2). 
This geometry only includes a boundary as edges and 
vertices on boundary discontinuities.

Figure 2: Primitive polygon geometry generation and 
transformation.

2.3. SECOND GENERATION OF TOPOLOGICAL 
OPERATIONS
Vertices and edges define the initial condition 
configuration. The edge is an implicit property that 
describes the system connectivity and the boundary curve 
condition. For this study, the primitive initial condition is the 
regular n-gon polygon. This operation evaluates an "n" 
number of vertices on a circumference. The topological 
properties of this initial condition are the polygon edge 
quantity and vertex amount and area centroid. The 
boundary condition determines three possible operation 
spaces: the area inside the boundary, the area outside the 
boundary, and the explicit edges of the boundary (Figure 
3).



240

Figure 3: Boundary condition defined by initial edge 
configuration.

Edges enable vertices to be operated on, as they control 
the unidimensional position based on the initial geometry 
regardless of any geometrical property. For the cases 
mentioned previously, edges can be added as inner edges, 
outer edges, or using the initial edge with no edge addition. 
The addition of edges requires two vertices; therefore, the 
area centroid is one of the vertices this edge definition 
needs. This method generates a new edge by connecting 
it to the midpoint of each starting edge in the geometry 
(Figure 4).

Figure 5 illustrates the set of topological operations 
described. Operations for edges occur before vertex 
operations to control and limit the two-dimensional space 
of manipulation. This control that vertices can only be 
operated on edges, principally by adding vertices because 
of the growing nature of this modeling technique. 

Figure 4: Edge operations on initial boundary condition.

Figure 5: Operation set for topological manipulation

2.4. DELAUNAY TRIANGULATION FOR MESH 
CONSTRUCTION
The given set of vertices obtained from the topological 
operations determines the mesh construction process. 
Delaunay triangulation takes the point cloud in a plane and 
internally makes groups of 3 vertices each, defining 
circumferences. No other vertex exists inside that 
circumference. The advantages of using Delaunay 
triangulation are the no vertex specific order requirement, 
and the maximization of the minimum angle for all the 
triangle faces of the mesh, avoiding narrow angles (Figure 
6).

Figure 6: Delaunay mesh configuration for a given set of 
vertices.

2.5. MESH ANCHOR POINT DEFINITION AND 
SIMULATION
Anchor points are the most defining entity for emergent 
shapes outside of the simulation parameter control. Vault 
shapes can be highly differentiated by activating or 
deactivating vertices. For this study, the area centroid used 
through all the topological manipulation processes is 
preserved. Besides the vertices can be activated or 
deactivated, the area centroid, edge vertices, and interior 
vertices determine anchor points.

The Particle-spring system simulation additionally requires 
the unary force vector simulating the gravity force and 
springs properties definition. From the initial condition 
geometry, edges are linear elastic elements; or springs. 
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Springs are linear elastic elements and must have a rest 
length factor. The rest length is the final extension the 
spring tries to reach. Also, the user must provide a stiffness 
coefficient value depending on the general scale of the 
model. Stiffness coefficient is the ratio of the force applied 
on a linear element and the displacement from the 
equilibrium state. This methodology defines an initial 
stiffness value of 25, but since it is variable the user can 
modify this value. The stiffness coefficient does not 
interfere with the topological operation process. (Figure 7).

Figure 7: Anchor point definition for PSS mesh simulation.

2.6. MODELING TECHNIQUE IMPLEMENTATION
The Particle-spring system simulation in Kangaroo Physics 
by Daniel Piker (2013) within the Grasshopper-Rhinoceros 
environment supports this technique. Additionally, 
iterations for design space exploration is supported by 
Colibri by Thornton Tomasetti. The geometric manipulation 
defines metric parameters within the PSS Kangaroo 
environment: stiffness, spring length factor, and unary 
vector force as gravity. The parameters specified can 
influence the geometric qualitative properties of the 
resulting forms.

Since the technique focuses on manipulating the initial 
condition only, the addition/subtraction of vertices within 
the boundary condition domain defines the topological 
properties. The topological properties are the vertex 
valency, system connectivity, and continuity of shapes. 
Generating a two-dimensional and a three-dimensional set 
of geometry tests this technique's capacity to generate 
emergent shapes. Also, the topology generated is a 
modular unit for the propagation and composition of more 
complex two-dimensional plans. 

RESULTS
The results of this technique implementation are the two-
dimensional topological configuration geometry and three-
dimensional vault-like geometry, simulated with the 
Particle-spring System technique. The two-dimensional 
geometry results include the topological configuration and 
the triangulated mesh. While the topological configuration
contains vertices and edges, the mesh represents the 
system connectivity. On the other hand, the three-
dimensional vault-like geometry contains the particle and 
spring system actioned by applying a simulated gravity 
force.

3.1. 2D TOPOLOGY RESULTS
The 2D geometries are the result of applying topological 
operations of addition under a primitive state of a regular n-
gon polygon. These individual operations, in order, are the 
following: number of polygon sides, polygon growing 
composition, vertex-edge subdivision, interior, and exterior 
vertex addition. The specified parameters (Table 1) 
evaluate the generated topological configurations within 
the range of described parameters.

Table 1: Topological configuration variables with specified range 
of evaluation. The range with decimal values set intervals of 0.25 
(quarter).

Variable Description Range
polygon Sides number [3-8]
copyScale Scale factor [0.25-1.00]
copyMove Vector factor [0.50-1.25]
ptEdge On edge add [0-3]
ptInt In bound add [0-3]
ptExt Out bound add [0-3]

A general rule of sampling defines these domain ranges. 
Excluding the polygon variable, the user can modify all 
other parameters using a quarter of the domain size as 
steps. Table 1 illustrates decimal numbers of the parameter 
copyScale that can be 0.25, 0.50, 0.75, 1.00. The same 
rule applies to the copyMove variable. For the ptEdge, ptInt 
and ptExt variables, as integers, possible values for 
evaluation are 0, 1, 2 and 3.

The size of this selectively constrained space design is 
6144 solutions. This experiment selects a total of 128 
geometry samples of two-dimensional and three-
dimensional geometries. For the topology configuration 
circles in red denote vertices, while black lines represent 
edges. The Delaunay triangulated mesh stores the 
information of each boundary, defined by the previous 
topological operations. Figure 8 illustrates sample results 
with respective parameter configuration.



242

Figure 8: Topology configuration results with a triangulated mesh 
topology.

3.2. 3D TOPOLOGY RESULTS
Each set of topology configurations also have a 
tridimensional vault-like structure geometry. Regarding the 
space design size of the two-dimensional catalog, the size 
of the three-dimensional space is 110592. The design 
space increases because of including the anchor point 
manipulation process. The simulation of the two-
dimensional topologies combines the following 
parameters: a gravity load of 9.8 m/s2, stiffness of 25 for 
the current scale of the model, and a spring rest length 
factor of 1. This section refers only to the topological 
module and the vault emergent shape. Shown below are 
the respective 3D models of the results sampled above 
(Figure 9).

Figure 9: 3D vault-like shapes. Geometry generated from the 2D 
configuration.

3.3. MODULAR COMPOSITION METHODS
The overall process is a continuous increase of layers to 
develop the complexity of the entire system. Therefore, this 
study proposes a modular composition method to use as 
geometry input to implement the modeling technique. The 
topological operation set is global for a given polygonal 
geometry composition to generate a new initial condition 
and mesh configuration with an emergent shape from the 
Particle-spring system simulation. The first composition 
method is a semi-regular polygonal tiling with a concentric 
arrangement. The second composition method uses a 
Voronoi cell configuration inside a regular boundary 
condition. The third composition method is a reproduction 
exercise of Gaudi’s Sagrada Familia cathedral using the 
modular initial condition results.

3.3.1 SEMI-REGULAR POLYGONAL TILING 
COMPOSITION METHOD
A semi-regular tiling is a tessellation made of two or more 
regular polygons. Although not all polygonal combinations 
can create a valid semi-regular composition, this method 
performs a Boolean intersection to split and make a non-
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overlapping composition. Figure 10 shows four samples 
with a main central polygon and a radial arrangement of 
secondary polygons. This method uses the resulting set of 
boundary condition and vertices to construct a mesh by 
merging the boundaries into a single region or preserving 
the polygonal module information (Figure 11). As a result, 
two possible configurations of 3D vault-like forms emerge 
from the 2D mesh topology. Figure 12 shows a single 
merged mesh, while Figure 13 illustrates a multiple 
modular mesh composition.

Figure 10: Semi-regular polygonal tiling with vectors and 
centroids.

Figure 11: Left: Merged mesh. Right: Modular mesh. 

Figure 12: 3D merged vault-like mesh result.

Figure 13: 3D modular vault-like mesh result.

3.3.2. VORONOI CELL CONFIGURATION 
COMPOSITION METHOD
A Voronoi diagram is the dual-graph of a Delaunay 
triangulation. This diagram allows a non-regular polygonal 
composition from a non-uniform vertex distribution on a 2D 
plane. A boundary condition enables the domain of the 
Voronoi cells, although it is possible to cull the outer cells 
to obtain an irregular boundary condition composition 
(Figure 14). Like the previous study, this method allows a 
merged mesh construction and modular mesh construction 
to differentiate the 3D results (Figure 15). Figure 16 shows 
the 3D resulting shape of the modular Voronoi cell mesh, 
and Figure 17 shows a single merged mesh.

Figure 14: Voronoi cell composition with different boundaries. 

Figure 15: Left: Modular mesh. Right: Merged mesh. 
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Figure 16: 3D modular vault-like mesh result. 

Figure 17: 3D merged vault-like mesh result. 

3.3.3. GAUDI'S SAGRADA FAMILIA CATHEDRAL 
REPRODUCTION
Since the modeling technique is capable of generating 2D 
topological configurations, the floor plan of the Gaudi's 
cathedral allows the placement of initial condition meshes 
(Figure 18). This reproduction study uses vertex and 
boundary condition information from the floor plan and 
places the dome vertices at a fixed height. Figure 19 
illustrates the 3D result where an iterative calibration of 
weight factors for gravity load simulates the vault-like
geometry. As this study approaches architecture directly, 
Figure 20 shows a section diagram of the 3D result.

Figure 18: Sagrada Familia floor plan with fixed vertices at plane 
and mesh domes at fixed heights. 

Figure 19: 3D mesh result of the Sagrada Familia reproduction.

Figure 20: Section diagram of the Sagrada Familia reproduction.
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DISCUSSION
The development of this technique focuses on expanding 
the early-stage design space. This technique would allow 
designers to generate topological configurations as initial 
conditions separately of the three-dimensional geometry 
generation. Currently, early form-finding processes focus 
on the three-dimensional geometry, constraining the initial 
condition to a user-defined state. The main contribution of 
this technique is the formal language based on a 
topological operation that grants a whole catalog of vault-
like structures. Also, detaching the topological 
configuration from the vault-like shape generation allows 
the control of the emergent form by manipulating a set of 
edges and vertices. This study tests the potential of result 
differentiation for space design extension.
The composition methods explored in this study expands 
the design space by testing more complex geometry. The 
semi-regular polygonal tiling can generate topologies by 
propagating a primitive polygon. For each composition 
result, vertices can be operated on to set up the mesh 
construction technique. This would allow the generation of 
emergent forms from the same initial condition. On the 
other hand, the Voronoi cell method allows a non-regular 
2D topological configuration from a given set of vertices. 
This study tests the modeling technique under an irregular 
initial condition set. Finally, the Gaudi's Sagrada Familia 
cathedral reproduction merges all the resources this 
modeling technique employs to approach a more complex 
architecture. Once provided the required topological 
information, this method would allow the generation of 3D 
vault-like complex structures using the modular initial 
condition from the early stage process.

This study focuses only on the geometrical side of the form-
finding for funicular structures design space. One of the 
main features of using a funicular form-finding technique is 
the inherent structural optimization approach. Further 
development for this technique is associating the structural 
behavior properties to the topological configuration. The 
main goal is to discover more optimal topological 
configurations and recognizing which parameter setting 
can generate more reliable structures. Optimizing this 
technique to generate only those defined as structurally 
efficient geometries would allow designers to manipulate 
topology in later design stages.
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