
Programming Complex 3D Meshes. A Generative
Approach Based on Shape Grammars

Umberto Roncoroni Osio1

1Universidad Peruana de Ciencias Aplicadas, Lima, Perù
umberto.roncoroni@upc.pe

Abstract: This article summarizes the results of art based research developed thanks

to a grant by the PUCP University of Lima in 2021-2022. An open source generative
solution will be described, based on generative grammars, to create very complex and
programmable 3D meshes. Analyzing hundreds of models generated with these
algorithms, a solution was found based on the idea of “intelligent meshes”, which change
their behavior during the modeling process. This is done using tags, or vertices
identifiers, that, like genes, describe the topological characteristics of each vertex and
its generative development during the process. Tags can be programmed interactively
editing its data with tools provided by the interface or using generative grammars that
allow an incredible variety of complex forms and stimulate the user creativity. The
research findings also elucidate some important conceptual issues, like the importance
of original technology development to defend cultural identity.

Keywords: Shape grammars, complexity, digital fabrication, ethno computation,

generative design

1 Introduction

Creativity is a key issue in the arts, science and cultural industries, not to

mention that it is of the greatest concern for innovative educational programs.

But creativity is a difficult topic to be handled properly. It is enough to mention

just three problems: creativity is hard to define, explain and measure

(Carnovalini & Rodà, 2020), its aesthetic meaning and aura are jeopardized by

postmodern art (Vattimo, 2000), over production and media saturation, and, last

but not least, the disruptive effect of digital media. To enter directly into the

digital matter, today computational creativity, 3D modeling, animation and

image processing technologies research, such as generative algorithms or

fractals, is occupied by the AI and Machine Learning discourse. But AI, not so

much paradoxically, leaves small room to users’ creativity (Colton, 2008) and,

335

spreading Anglo-Saxon computational thinking, it is one of the most efficient

assets of digital colonization (Iranil, 2010).

These are good reasons to develop shape grammars (Stiny & Gips, 1972)

and generative algorithms as a valid alternative (McCormack, 2004), for their

simplicity, creative power (Prusinkiewicz & Lindenmayer, 1990; Pestana, 2011)

and because they offer the possibility to simulate natural phenomena and local

artistic traditions, like ethno computation (Varma, 2006; Roncoroni & Crousse,

2016), intuitively and without black boxes (Alfieri, 2005; Colton, 2008). In this

paper I will concentrate attention on software development, visual analysis and

artistic practice results. Due to these properties, the generative design tools

described in the following paragraphs will be valuable to artists, industrial

designers and educators to experiment with new design processes, explore

computational creativity as a research, or educational tools and to link

parametric design with cultural identity. From the production point of view, these

algorithms help artists and designers to explore the relationships between

forms and new materials also suitable for 3D printers and robotic fabrication.

2 Methodology

This paper is the result of an interdisciplinary artistic research project

supported by a grant from the PUCP University of Lima1. The research methods

expand the art based research framework (O'Donoghue, 2009) and consist of:

a) Review of papers in the field of Computer Science, Digital Humanities and

Digital Art, especially generative design, shape grammars and ethno

computation topics; b) Analysis of software for audiovisual creative production

(DAWs and 3D Modeling software Rhino and 3DMax); c) Visual analysis of

pre-Columbian art; d) Software development using extreme and incremental

programming; e) Artistic practice and digital fabrication with 3D printers and a

Kuka robotic arm.

3 Results

3.1 Literature and Software Analysis

Papers about computational creativity, generative art and parametric design

show that the potential of shape grammars is not fully developed (Roncoroni,

2022). Besides, there is a lack of friendly and interactive generative

1 See https://investigacion.pucp.edu.pe/grupos/gries/noticia-evento/concurso-anual-

proyectos-investigacion-cap-2021/

336

https://investigacion.pucp.edu.pe/grupos/gries/noticia-evento/concurso-anual-proyectos-investigacion-cap-2021/
https://investigacion.pucp.edu.pe/grupos/gries/noticia-evento/concurso-anual-proyectos-investigacion-cap-2021/

applications. On the other hand, plug-ins (like EuroRack), programming

languages (like Processing), game design engines or DAWs (like Unity or

Reaper) that use AI or generative techniques and can be often installed freely,

quite often share the same algorithms and lack proper documentation. This is

reflected in repetitive and standardized design artifacts.

3.2 Analysis of Natural Forms, Pre-Columbian Art and Shape
Grammars Simulations

The capability and potential of L-Systems to simulate natural phenomena is

well known (Prusinkiewicz & Lindenmayer, 1990), so it is not mandatory to enter

into this topic here.

Fig 2. The rule system interface design is similar to quipus, with a baseline –the

axiom- that opens the sequence of rules. The effect of the rule depends on its vertical
hierarchy, like the quipus’ knots. Source: author (2020).

On the other hand, Pre-Columbian and traditional ethnic art shows

(Crousse, 2011) that algorithmic and natural procedures were commonplace.

The same could be said about the chakana and the quipus that will be

mentioned in this article, and other ancient artifacts and designs like the yupana

(Fig. 1). For instance, the generative potential of quipus was investigated by the

Neapolitan alchemist Raimondo di Sangro (1750). As shown in figure 2, there

is obviously a computational thinking in the ropes, knots and colors and a

creative hypothesis to use them as a linguistic code or interface design

metaphor, to improve usability in shape grammars applications.

3.3 Software Development, Artistic Practice and Improvement of L-
Systems Techniques

Even if a huge amount of research about shape grammars already exists,

the creative power of symbolic dictionaries, rules and substitution algorithms

can be expanded. In existing applications, rules are rigid, they can’t share

parameters and programming tools like loops or conditional statements. In

337

previous research (Roncoroni, 2022), improvements were developed to L-

Systems dictionary and rule sets, to overcome some of their limitations.

Fig. 3. Example of symbols for nested recursive substitution. Source: Author (2020).

Fig. 4. Left: huaca, Andean cross (chakana), and spirals in the Cantalloq aqueduct,
near Ica, in Perù. In the middle, Algorithmic drawing, L-Systems’ grammar to rotate the
chakana and to match positions with bricks’ numbers. Left: Final L-Systems tower.
Source: Author (2018).

338

I will mention here just one of these extensions: automatic symbols (“n”) with

nested recursion and with slave or sub-symbols (“ñ”) controlled by the number

of instances, or the master symbol hierarchy in the grammar, or by the level of

the substitution process. Figure 3 explains a model that is impossible to build

with standard L-Systems vocabulary and rules, since it would be necessary to

write a particular rule for every column to match the number of blocks and their

rotation degrees. Symbol “n” sets the hierarchy of the columns in the row and

“ñ” sets the corresponding number of objects: for example, the first instance of

“n” sets 1 block, the third instance 3 blocks, etcetera. In this way L-Systems are

converted in a sort of programming language, like side chain functions, to link

the number of bricks to the empty space between them, and to match the

chakana’s grammar to the position and rotation parameters of the growing

spiral (fig. 4).

3.4 Software Development and Artistic Production

During the research many generative techniques have been explored, using

self-similarity, natural processes, and traditional designs’ ethno computation.

After the generation with different functions and parameters of hundreds of

models, two solutions were selected that solved the task to create something

new. The first is the mesh remix tool set that expands the standard morphing

process with additions like masks, side chain modulation, genetic behaviors,

shape grammars and cellular automata (fig. 5). The second that will be exposed

in the following sections is the programmable mesh technique.

Fig. 5. Left: ancestors meshes. Right: three remix modes. Source: author (2022).

3.5 Generative Programmable Meshes

The algorithm that will be described here is based on the idea of a mesh that

changes its geometric properties during the generation process. Like in cellular

339

automata and finite state machines, the meshes’ vertices act like cells whose

values describe topological properties, transformation parameters and other

behaviors. In this way the mesh grows like an organic natural process.

This is done using “tags”, or vertices identifiers, assigned to a pattern of

vertices that can be programmed interactively or using L-Systems (McCormack,

2004). This allows for an incredible variety of complex forms, and stimulates

the user to experiment freely.

Fig. 6. Left: example of patterns. Left: construction of the mesh sections shape.
Source: author (2022).

In the first step, the user creates a pattern of n points (usually a multiple of

8 to match symmetry and bytes) and allocates their alphanumeric identifiers,

the tags. This pattern generates a closed shape with 8 or 4 axis symmetry (fig.

6). Here is where shape grammars and L-Systems come into hand, to create

interactively the patterns and change the tags during the process.

Fig. 7. Top left: L-Systems grammar, tags pattern and the symmetric section
shape. Down: adding tags transformations to the linear mesh. Source: author (2022).

Now, during the mesh construction, every point can be translated, scaled or

rotated using their TAGs parameters, and behave independently or interacting

with other TAGs, considering its XZ position in the section and in its height in

the mesh (Fig. 7, 8). In this way, every section or slice of the mesh can smoothly

change its form without losing the formal coherence of the mesh as a whole.

The interactions between points and TAGs can be done with cellular automata,

340

interactive functions or reading values from data sets or images. The TAGs rule

set can be processed using the usual shape grammars substitution process

embedded in the main function (Fig. 8). This data can be saved and combined

with the others using the remix tools describe above.

3.6 Technical Issues of Complex Generative Meshes

Fig. 8. Left: the pattern, the section and the linear mesh. Right: transforming the
mesh with the same pattern and TAGs but different parameters’ values. Source: author

(2022).

Generative processes like programmable meshes are highly unpredictable
(this is the reason why they are so fascinating). But this comes at the cost of
geometrical problems that happen when vertices are heavily transformed and
vertices’ positions are too rough. In this sense, TAGs help to analyze the
topological data without performing tests that, when working with more than
1,000,000 polygons, slow down the process excessively. The software
additionally takes charge of other issues that could result in geometric
inconsistencies, such as face intersections that cause errors, or the need to use
support material in the 3D printing process.

3.7 Software Development and Interface Design. The Artist as Computer
Scientist

Working with complexity, generative processes and art, it results that

software development gets very confusing. It is interesting to stress here the

different approach to programming of artists and computer scientists. In the

present case, extreme and incremental programming paradigms were used, but

when the programmers are artists, the development is a lot less linear than

expected. While programming needs careful organization and a precise

workflow, the artistic experimentation and software development needs

improvisation, serendipity and permanent trial and error processes that quickly

lead to bugs, undesired effects and ineffectiveness.

341

The solution was, in the first place, to experiment freely with the code at the

beginning, and rewrite the entire application also improving the user interface

design. Through parallel artistic production, it was found that the best software

architecture should be modular, to help the user thorough the step-by-step

process, with every step enabled by its predecessor and the compatibility of

geometric properties. The interface accompanies the workflow with instructions

and examples on how to use every function, to make the learning curve as

smooth as possible. Finally, considering the open source philosophy of this

application, the code was revisited in the literary sense, and considered as a

text in its full right.

4 Discussion

Setting apart the artistic and technical benefits, the research findings also

elucidate some important conceptual issues about computational creativity and

education.

4.1 Original Technology Research

In the first place, software development and artistic results exposed the

importance of original technology research. This infers “reinventing the wheel”,

in other words, to develop algorithms or functions are already available in

internet. The truth of this lies in the fact that real innovation comes from the

deep understanding and control of every layer of the process; on the contrary,

the use and abuse of libraries and ready to use solutions, that can be helpful to

speed up production, generate creative constraints –the proper word should be

cages - where creative results are not of the artist. Original technological

research is paramount also in the broader cultural domain, to defend cultural

identity and correct the ideological biases (Varma, 2009) of the commercial

modelling solutions for artists, designers and architects. Every single line of

code embeds significant knowledge that will unfold completely when all the

pieces are put together, giving to the software and to its users cultural definition

and power.

4.2 The Black Box Problem and the Benefits of Generative Grammars
Solutions

The computational and artistic research results demonstrate that complexity

and creativity forms don’t need complicated technological solutions; L-Systems,

in this sense, have many benefits. Firstly, with some improvements, offer

control and flexibility almost like a programming language, but are easier to

understand (yet certainly difficult to develop properly). In the second place, L-

Systems grammars and codes are transparent, and more intelligible,

compared, for instance, with AI algorithms (Wyse, 2019) whose deep

342

computational processes are puzzling even for their creators. I will add that AI

can be developed starting from the fundamental idea of meta-medium (Kay,

1980) and can be interpreted as interfaces architecture and design in any

application. Furthermore, the difficulties of generative design can be limited with

a proper interface design and coding style; both help the users to exploit the

parameters’ creative properties and the aesthetics properties of algorithms

(Fishwick, 2006). It is important to realize that many independent and open

source solutions are discarded because of lack of documentation.

4.3 Issues in Educational Technology

These topics are particularly relevant when digital tools are used in learning

contexts (Stig Møller, 2017). Generative grammars lingos, like L-Systems, not

only can be programmed easily, even without experience, but also, very much

like Turing machines, they can be developed by hand (Alfieri, 2005) and can be

used as methods in analog processes with traditional materials. Even in digital

processes, the need for computers appears only in the last step of the design

process; in this way, machines do not interfere with the development of a

creative and critical computational thinking. In this sense, cultural identity and

ethno computation references and resources, like quipus or the yupana, are not

just visual metaphors for interface layouts or artistic installations. Embedded

and coded in algorithms and functions and supported by analogies in design

methods, data structures and computations, cultural traditions come to life to

shape contemporary culture as concrete methods, solutions and fabrication

tools.

4.4 Conclusions

Lastly, I will resume the main concepts and findings of the research, and

some ideas about its future developments and improvements.

a) Generative grammars proved, through artistic practice, that they are very

creative tools and that there is no need for machines to foster digital literacy

and computational thinking. Using traditional techniques and materials

overcomes the techno-centric bias that educational technology carry out (Alfieri,

2005).

b) Cultural traditions, native artistic practices and ethno computation are

inherently modular and recursive (Khajuraho & Vinayak 2018), thus, can be

molded with shape grammars and the tag solution discussed here easily (fig.

9).

c) Generative art and generative grammars are techniques with a great

creative and heuristic potential, as software development demonstrated during

the project activities. From the aesthetic and epistemological point of view, the

artistic research validation can be sustained precisely by this heuristic potential,

whose evidence is the artistic production and its diffusion in design

communities.

343

Fig. 9. Generative grammars and programmable meshes can simulate different artistic
styles, like medieval Hindu architecture and decorative art, and help to understand

their fractal processes. Left: source: Khajuraho & Vinayak (2018). Right: author (2022).

d) Software development and artistic practice also discovered some

geometric and topological problems raised by complex generative processes.

But the programmable tag mesh solution minimizes these issues and facilitates

the compatibility with digital fabrication, and demonstrated that complex forms

can improve competences in 3D printing and robotic manufacture, as the

Subdivided Columns of Michael Handsmeyer (2019) already demonstrated,

and the possibilities of recycled organic materials. Technicalities apart, this

computer interdisciplinary research also enlighten some interesting concepts

about computational creativity and the relationships between computational

creativity and education.

e) Writing our own functions and giving up the cut and paste of software

libraries may seem excessive, since it requires hard work and a sort of

“rediscovering the wheel” process. But this is necessary for true digital literacy,

technological innovations and creativity. In fact, through the control over these

pieces of knowledge (algorithms, processes and parameters), we eventually

miss using libraries lightly, is the key to add aesthetic value and originality to

our projects.

f) A lot more attention should be paid to the cultural aspects of software

and interface design. Software is a complex cultural object with many layers of

meaning that we are still not taking advantage as such. For educational and

artistic purposes of computational thinking and creativity, the artistic research

enlightened the differences between coding and software. Software is more

than writing code, it includes interactivity, the coherence between ends and

means, cultural biases, issues about the distribution of information of

344

knowledge. So far, software as a cultural object needs much more humanities

than sciences.

4.5 Further development

Generative design methods like shape grammars and techniques like

programmable meshes can be indefinitely developed and improved from the

computational, aesthetic and educational point of view. I will mention some lines

of research in digital humanities that seem particularly important: to develop

interface designs and human-machine interaction strategies for creative

purposes; explore software as a text, in the sense defined by Barthes (1997),

that gathers technical and creative means, data, concepts and audiovisual

resources; and finally, strategies and programs to improve the interdisciplinary

formation of artists like inventors and scientists.

References

Alfieri, A. (2005). L-system Fractals: an educational approach by new technologies.
Quaderni di Ricerca in Didattica (Mathematics), 25:2. Palermo: University of
Palermo.

Barthes, R. (1997). The Death of the Author. In S. Heath, trans. Image, Music, Text.

London: Fontana Books.

Carnovalini, F. y Rodà A. (2020). Computational creativity and music generation
systems: An introduction to the state of the art. Frontiers in artificial intelligence 3.

Colton, S. (2008). Creativity versus the perception of creativity in computational systems.
AAAI Spring Symposium: Technical Report, pp. 14-20.

Crousse, V. (2011). Reencontrando la espacialidad en el arte público del Perú. Tesis
presentada para la defensa del grado de Doctor. Universidad de Barcelona,
Barcelona.

di Sangro, R. (1750). Lettera apologetica dell’Esercitato accademico della Crusca.

Naples: Gennaro Morelli.

O'Donoghue, D. (2009). Are We Asking the Wrong Questions in Arts-Based Research?
Studies in Art Education, 50: 4, pp. 352-368.

Fishwick, P. (2006). Aesthetic Computing. Cambridge, Massachusetts: MIT Press.

Handsmeyer, M. (2019). Tools of Imagination. In Viana, V. (Ed.) Geometrias’ 19. Book
of Abstracts. Porto: Aproged.

Kay, A. (1984). “Computer Software.” Scientific American 251(3), pp. 52–59.

Khajuraho, T. & Vinayak, S. (2018). Trends in Fractal Dimension in Laxman and
Kandariya Mahadev Temples. International Journal of Applied Engineering
Research, 13, (3) pp. 1728-1741.

345

Iranil, L., Vertesi, J., Dourish, J., Kavita, P. & Grinter, R. (2010). Postcolonial Computing:
A Lens on Design and Development. Irvine: University of California.

McCormack, J. (2004). Generative Modelling with Timed L-Systems. In J. S. Gero, ed.
Design Computing and Cognition. Berlin: Springer, pp. 157–175

Pestana, P. (2011). “Lindenmeyer Systems and the Harmony of Fractals.” Proceedings
of the Chaotic Modeling and Simulation International Conference, pp. 449–456.

Prusinkiewicz, P. & Lindenmayer, A. (1990). The Algorithmic Beauty of Plants. Berlin:
Springer.

Roncoroni, U. & Crousse, V. (2016). La virtualidad aumentada: procesos emergentes,
arte y medios digitales. Artnodes, 17.

Roncoroni, U. (2015). Manual de diseño generativo. Lima: Fondo Editorial de la
Universidad de Lima.

Roncoroni, U. (2022). Electronic Music and Generative Remixing: Improving L-Systems
Aesthetics and Algorithms. Computer Music Journal, 45:1, pp. 55–79.

Stig Møller, H. (2017). “Deconstruction/Reconstruction: A Pedagogic Method for
Teaching Programming to Graphic Designers”. In Soddu, C. (ed.) 20h Generative
Art Conference GA2017 Proceedings.

Stiny, G., & Gips, J. (1972). “Shape Grammars and the Generative Specification of
Painting and Sculpture.” In O. R. Petrocelli, ed. The Best Computer Papers of 1971,
pp. 125–135.

Varma, R. (2006). Making computer science minority friendly. Communications of the
ACM 49(2), pp. 129-134.

Vattimo, G. (2000). La società trasparente. Milán: Garzanti.

Wyse, L. (2019). Mechanisms of artistic creativity in deep learning neural networks. In
Proceedings of the International Conference on Computational Creativity.

346

