

SIGraDi 2023. Accelerated Landscapes | Centro Universitario Regional Este (CURE)

Facultad de Arquitectura, Diseño y Urbanismo | Universidad de la República.

BIRT: An Open-Source Integration Toolkit for
Architectural Robotics

Luis Arturo Pacheco

1 Florida International University, Miami, Florida
lpacheco@fiu.edu

Abstract. The growing role of robotic systems in various fields, including architecture
calls for a more accessible and adaptable control solutions. This paper introduces the
Blender Interactive Robot Control Tool (BIRT), an open-source toolkit designed to
simplify hardware integration, motion control, tool pathing, and interfacing with robotic
arms using an Internet of Things (IoT) approach. BIRT combines the precision of offline
programming with the adaptability inherent in online programming. It comprises a
Blender interface, a Python communication abstraction layer, and an IoT hardware
integration interface. This toolkit seeks to simplify the integration of sensors and
actuators, offer an interactive approach to tool pathing, explore non-traditional
approaches to robot control, and enhance affordability. Three separate yet
interconnected tools are developed and tested as part of BIRT, each dealing with a
different aspect of the system. This research contributes to the field of architectural
robotics by proposing a solution to make robotics more accessible and adaptable to
varying operational demands.

Keywords: Interactive, Robotics, Real-time, Blender3d, Fabrication.

1 Introduction

As automation continues its rise across various industries, there's a rising need
for more user-friendly and intuitive interfaces for robotic arm control. Traditional
industrial robot control interfaces are often complex and outdated, confining
their use to individuals with extensive technical knowledge (Briggs, 2004). This
limitation impedes the adoption of robotics technology among non-technical
users in creative industries, such as architecture and crafts.

Architects and creative professionals are pushing boundaries by exploring a
variety of tools and solutions for programming robots and collaborating with
them. These efforts typically pivot around either offline programming
approaches (Braumann, 2011; Poustinchi, 2020; Soler, 2023; Schwartz, 2012)
or online programming approaches (Gannon, 2018; Garcia del Castillo y Lopez,
2019; Munz, 2016). A main limitation of this approach is that online systems
often lack the precision of offline, and conversely, offline lack the adaptability of
online systems. This becomes particularly challenging when integrating robots
in dynamic fabrication environments, such as construction sites and craftwork
settings (Braumann, 2022). It is also challenging to integrate diverse

components for custom end-effectors and other robot accessories for dynamic
environments. (Braumann, 2012; Jensen, 2020; Stefas , 2018; Rossi, 2022;
Van Mele, 2017-2023)

To address these challenges, I present a workflow centered around the
Blender Interactive Robot Control Tool (BIRT). BIRT is an open-source toolkit
that streamlines hardware integration, motion control, toolpathing, and end
effector control using an IoT approach. Combining the precision of offline
programming with the flexibility of online programming, BIRT incorporates a
Blender user interface, a Python communication abstraction layer, and an IoT
hardware integration interface (Figure 1).

Figure 1. Systems diagram showing the relationship between the BIRT control
software stack, hardware abstraction layer, and IOT hardware interface. Source: Luis

Pacheco, 2023

1. Current robot control software and their constraints

In the past decade, there has been a significant spike in the development of
software tools for programming and controlling robots, catering to different
applications, ranging from traditional industrial robots to creative and
architectural robotics. These tools could be broadly categorized as Industrial
robotics, architectural robotics, and creative robotic tools. The following is an
overview of some of the most used robot arm control and programming
interfaces highlighting their features and capabilities.

1.2 Industrial robotics tools

Traditional robotic programming tools, designed primarily for industrial
applications, streamline the development and implementation of robotic
systems for repetitive tasks. Prominent among these are tools like ABB
RobotStudio for ABB robot simulation and offline programming (abb.com,
2023), KUKA Sim for KUKA robots (kuka.com, 2023), Universal Robots'
Polyscope that offers no-code programming for Universal Robots (universal-
robots.com, 2013). Each one of these focuses on a specific robot brand. There
are alternatives that standardize robotic development like RoboDK for
simulation, offline programming, and NC conversion for multiple robot brands
(robodk.com, 2023).
These software solutions provide capabilities to simulate, program, and control
robots, usually for various manufacturing tasks. They typically offer graphical
user interfaces for ease of use but are geared towards industry professionals
with experience in robot-specific programming languages, PLC programming,
and electronics. Consequently, they can present challenges when applied in
non-industrial settings such as architectural robotics, where flexibility, simplicity,
and ease of experimentation are key considerations.

1.3 Architectural Robotics Tools

Architectural robotics involves the integration of multi-axis robotic systems
within the design and construction process, enabling architects and designers
to explore innovative fabrication techniques, materials, and spatial
configurations, usually incorporating digital fabrication and mass customization.
These tools facilitate the creation of complex structures and geometries that
push the boundaries of conventional architectural design (Kolaveric, B., 2001).
 Some architectural robotics tools, include KUKA//PRC for parametric
robot control in Rhino and Grasshopper initially aimed at mass customization
and later incorporated real-time control tools, HAL as a robotics software
package for architectural applications, Robots as a plugin for Rhino's
Grasshopper interface to create parametric toolpaths and simulate robot
programs, and the COMPAS framework as an open-source computational
framework for collaborative research in architecture (Van Mele, 2021), cater to
the specific needs of architects and designers. These tools integrate with
popular design software such as Rhino and Grasshopper, enabling users to
create complex robotic programs for fabrication and construction. With these
tools, architects and designers can explore new ways of fabricating structures,
objects, and spaces using robotic systems, pushing the boundaries of
conventional architectural design. One key limitation of these architectural
robotics tools is limited or restricted access to real-time control, robot state, and
sensor feedback needed for interactive tool pathing and real-time control.

1.4 Creative Robotic Tools

Creative robotic tools encompass many applications outside the traditional
industrial and digital fabrication context, including art, design, and human-robot
interaction. These tools enable users to control and program robots in novel
ways, allowing for unique expressions and interactions that push the
boundaries of robotics technology.

Creative robotic tools encompass a variety of innovative solutions
designed for applications beyond traditional industrial settings. One such tool is
Mimic, an open-source plugin for Autodesk Maya that facilitates the control of
industrial robots (mimicformaya.com, 2023). Another creative tool, Quipt,
developed by Madeline Gannon, enables gestural communication and
interaction between humans and robots, paving the way for more natural and
intuitive human-robot collaborations (Gannon, 2016). In the domain of
parametric design, Oriole Beta stands out as a tool that empowers designers to
'design' the motions of the robot based on the principles of keyframing and time-
based animation, instead of merely generating pre-set motions (Poustinchi, E.,
2020). Further, Robot Ex Machina, an open-source computational framework,
offers real-time robot programming and control, implementing an action-state
model that provides a highly interactive online robot programming interface
(García del Castillo y López, J. L., 2019). They enable different means of
interaction and artistic expression using robotic systems. These tools allow
users to control industrial robots interactively or in real-time for creative tasks,
such as animation, gestural communication, and robotic videography.

Despite the variety of creative robotic tools available, several gaps and
issues still need to be addressed to enhance their usability and functionality.
One major issue is the lack of real-time feedback while developing a reactive
toolpath, and integration with custom end effectors and sensors which prevents
users from accurately visualizing the current state of the full robotic cell system.
This limitation hinders the ability to adapt and react to changes in the work cell
or the workpiece during the programming process. Finally, some of these tools
often involve complex workflows that can be time-consuming and difficult for
users, particularly those with limited technical expertise to set up.

Simplifying the integration of sensors, reading robot states, and real-
time control for reactive tool pathing is crucial to enable more interactive and
adaptable robotic programming. Current tools often require advanced
knowledge and complex programming to incorporate sensor data into the
toolpath generation process, limiting their accessibility and adaptability.
Lastly, there is a need for a completely open-source workflow that encourages
collaboration, knowledge sharing, and the development of innovative solutions.
Many existing tools are proprietary or have limited open-source capabilities,
hindering the potential for broader adoption and customization by the user
community. Addressing these gaps and challenges will help advance the field
of creative robotics and enable more accessible, flexible, and interactive robotic
programming solutions.

2 BIRT Description

The Blender Interactive Robot Control tool (BIRT) aims to provide a
comprehensive workflow that combines the precision and accuracy of offline
programming with the parametric tool pathing workflows offered by architectural
tools while integrating online features to enable a hybrid approach to interactive
robotic tool pathing. This innovative workflow caters to tasks that require
adaptability to changes in the work cell or the workpiece, which are commonly
encountered in construction and traditional craft settings. By providing an
interactive tool for hybrid fabrication, BIRT allows for the seamless integration
of precise toolpath operations with the dynamic variables present on
construction sites and within craftwork environments (Gannon, M., 2006).
Furthermore, BIRT emphasizes the ability to integrate various sensing devices,
focusing on interactive and reactive tool pathing, which enables more robust
and adaptive control over robotic systems. Through this approach, BIRT can
significantly enhance the capabilities of robotic programming in these
industries, fostering greater innovation, efficiency, and adaptability in the
creative applications of robotic technology. The following describes
implementing a Minimum Viable Product (MVP) for testing this workflow.

2.1 BIRT Minimum Viable Product (MVP)

To develop the MVP, I chose Blender for its robust 3D environment, animation
tools, and comprehensive Python API, which facilitates the capturing of work
cell features and the generation of dynamic toolpaths. Its popularity in creative
fields and open-source nature make it an excellent choice. I focused on two
collaborative robot platforms: U-Factory X-Arm and Universal Robots due to
their safety, user-friendly design, cost-effectiveness, and adaptability. To
simplify communication and integration, I adopted OSC (Open Sound Control),
which excels in transmitting data over networks using UDP. It effectively bridges
software and hardware because it is human-readable, extensible, and widely
supported in creative coding communities. Lastly, the ESP32 was chosen for
its affordability, networking capabilities, and user-friendliness (Figure 3). The
ESP32 expedites integration with various low-cost electronics, sensors, and
actuators, minimizing the need for voltage conversions and physical
connections.

The development of BIRT MVP consists of the creation and testing of three
key tools, each handling a different aspect of the system. The first tool is the
Blender Interface, a user-friendly platform for intuitive control and visualization.
The second is the communication backend, which is responsible for efficient
and streamlined data exchange between various system components. The third
and final tool is focused on the hardware abstraction layer that interfaces with
the sensors, actuators, and hardware devices.

2.2 The Blender Interface

The Blender Interface operates as a Blender addon. It offers intuitive, CAD-like
control of a simulated robot arm, which acts as a controller for the physical robot
(Figure 2). This provides UI elements that manage connections with the robot,
simulate and visualize the robot and work cell, and establish links with various
sensors, actuators, and end effectors. It also sets the toolpath from target
empties (frames), curves, or edges (polylines). Users can select a toolpath and
set custom parameters to control the robot's motion, speed, extrusion rate,
cooling fan, etc. based on their unique setup.

Figure 2. BIRT is built on Blender, a popular and actively developed open-source CAD
tool. Here I show the control interface for moving the simulated robot, which accurately

matches the real-world robot. Source: Luis Pacheco, 2023

2.3 The Python Backend

The Python backend script serves as an essential link between different
systems. It leverages the OSC messaging protocol and various libraries that
support robot control to facilitate communication between elements. For
instance, BIRT uses the Python library ur-rtde for communication with Universal
Robots, the XArm Python SDK for with XArm robots and KukavarProxy for
KUKA robots.

This backend script introduces a human-readable messaging standard,
promoting seamless coordination among the interface, data streams, sensors,
actuators, end effectors, and other components. It forms an abstraction layer
that manages the messages necessary for custom components to read or send
data. Although it's designed to seamlessly integrate with Blender's API, it holds

the potential to function stand-alone or within other Python environments, such
as Rhino.

2.4 The ESP32 Firmware

The ESP32 Firmware provides a streamlined communication channel that
interprets OSC messages to the GPIO, PWM, I2C, and more, and vice versa.
This allows for the easy integration of various low-cost sensors and actuators.
Each ESP32 is wirelessly incorporated into the system, both expecting and
sending messages that describe its functionality to the Python backend. This
approach accelerates prototyping and experimentation by eliminating the need
for voltage conversion across systems, reducing the need for physical
connections and cables. Additionally, the ESP32 opens up the possibility of
creating custom remote interfaces for controlling individual components, thus
enhancing interactivity and ease of use.

Figure 3. An example of a physical control panel for an extruder that allows to change
the flow, fan speed and temperature dynamically. Source: Luis Pacheco, 2023

3 Prototypical Workflow

The prototypical workflow commences with the digitization of the work cell's
features. Users employ sensors, scanning tools, or the robot itself to capture
critical points, such as fixtures, tooling, and obstacles, within the workspace.
The digitized features are instantaneously visualized in the 3D viewport,
enabling accurate robot motion planning and interaction with the work cell. By
ensuring the virtual environment aligns with the physical space, users can
optimize the robotic workflow.

The second step of the workflow is the interactive development of
toolpaths and their simulation. Users have the flexibility to add, modify, or
update features both physically and digitally at any point in time. They can
simulate the robot and various other systems before transmitting the motion
paths, which allows for adjustments, safer motion, and minimizing errors.
Parametric tool pathing utilizes these key points as parameters, offering a
dynamically updated toolpath definition. Furthermore, toolpaths can be 'hand-
drawn' by referencing various points and surfaces, thereby promoting a more
intuitive and direct approach to toolpath creation.

In the final step of the prototypical workflow, users define the control
flow logic for the toolpaths and parameters. At any given point, it's possible to
modify the toolpath for real-time adjustments to the robot program and other
systems in the cell. Logic states can be programmed to specify how the robot
should respond to changing conditions within the work cell, workpiece, or user
input. This enables users to create custom behaviors and interactions tailored
to their needs. By incorporating real-time adjustments into the robot program,
end effectors and other actuators users can create a more dynamic and
adaptable system, capable of responding to the inherent variability present in
construction sites and craftwork environments.

4 Potential Use Cases

Each of the following hypothetical cases could benefit from BIRT's capabilities
like digitizing real-world contexts and entities, interactively developing toolpaths
and interactions, converting these into actionable robotic movements in the
physical world, and controlling the use of customized end-effectors or external
axes, it can also be used to synchronize multiple robotic systems to work
together.

4.1 Construction site work area feature digitization

BIRT tool can be employed to capture data on the features of the work area,
such as walls, tubes, and other elements in a construction site. The captured
data can be used to calibrate the virtual work cell in Blender, enabling users to

plan and simulate robotic tasks with a high degree of accuracy. This process
reduces the risk of collisions and ensures that the robot's movements are safe
and efficient in a dynamically changing work area. For example, the robot can
be used to drill a specific pattern and size for holes on a wooden surface,
adapting to real-world conditions and adjusting its movements accordingly,
simultaneously allowing for adjusting the tool speed and penetration.

4.2 Hand-Drawn Toolpath

BIRT can be employed to capture multiple surfaces, enabling users to create
"hand-drawn" toolpaths that adapt to the normals of the surfaces. This
interactive approach to toolpath development allows users to design and
implement custom toolpaths that accurately follow the contours of the
workpiece, resulting in a more precise and tailored outcome. Some examples
can include painting, milling, or 3D printing on nonplanar surfaces. Each
toolpath could be dynamically generated on a tablet or drawing app, then the
program would map the curve into the given surface, allowing for an interactive
workflow.

4.3 Parametric Pick and Place Operations

BIRT can be used to program a robotic arm for pick and place tasks. Users can
define a different source point for each object to be picked up and placed in an
organized parametric array. An object could be then tracked in real-time to
specify the source or target location, it is also possible to track the position of
an obstacle and have a parametric toolpath that avoids collision with the
obstacle. This enables the robotic arm to adapt to varying object positions,
ensuring accurate and efficient object handling and placement, even in
environments with dynamic object layouts.

4.5 AI Robotic Painting

BIRT can potentially integrate a workflow that involves incorporating an external
"feed" of movements to paint based on an AI API integration. By leveraging AI
algorithms, the robot arm can generate painting toolpaths that produce unique
and visually engaging designs. The BIRT tool provides the necessary
framework for connecting the AI-generated toolpaths with the robot's
movements, enabling users to create AI-driven robotic painting applications.

5 Conclusion and Future Work

The development of BIRT tool demonstrates the potential for combining the
powerful features of Blender with the specific needs of robotic control in various

industries. The tool provides a user-friendly, accessible, and extensible solution
for both novice and experienced users to create and control robotic programs
with ease. As the field of robotics continues to grow and evolve, there are
numerous avenues for future research and development of the BIRT tool. Some
potential directions include:

- Expanding the range of supported robot models and brands: Extending the
BIRT tool to accommodate a wider variety of robot arms from different
manufacturers will increase its versatility and applicability in various industries.

- Incorporating machine learning and computer vision techniques: Integrating
advanced algorithms for machine learning and computer vision can further
enhance the tool's capabilities for real-time control and interaction with the robot
and work cell environment.

- Developing a physical user interface: Creating a physical interface for the
BIRT tool, such as a handheld controller or haptic device, could improve user
experience and enable more intuitive control of the robot.

- Exploring collaborative applications: Investigating the potential for the BIRT
tool to facilitate human-robot collaboration in various industries can open up
new possibilities for productivity and creativity.

- Enhancing the CAM and 3DP slicing capabilities: Developing more advanced
CAM features and 3DP slicing tools within the BIRT tool will enable users to
carry out more complex tasks and streamline the fabrication process.

By addressing these future research directions, the BIRT tool can continue to
evolve and adapt to the changing needs of the robotics community, driving
innovation and collaboration in various fields. As an open-source project, the
BIRT tool can benefit from the collaborative nature of the open-source
community, allowing individuals and organizations to contribute to its
development, enhancing its features, and addressing the specific needs of
various users and industries. The open-source approach encourages
innovation, accelerates the development process, and ultimately results in a
more robust and versatile tool.

References

Biggs, G., & MacDonald, V. (2004). A Survey of Robot Programming Systems.

Braumann, J., & Brell-Cokcan, S. (2011). Parametric Robot Control - Integrated
CAD/CAM for architectural design.

Braumann, J., & Brell-Cokcan, S. (2012). Digital and Physical Tools for Industrial
Robots in Architecture: Robotic Interaction and Interfaces.

Braumann, J., & Brell-Cokcan, S. (2014). Visual robot programming - Linking
 design simulation and fabrication.

Braumann, J., Gollob, E., & Singline, K. (2022). Visual Programming for Interactive
Robotic Fabrication Processes. Process flow definition in robotic fabrication.

Gannon, M. (2016). Quipt: A gesture-based design tool for robot programming.

Garcia del Castillo y Lopez, J.L. (2019). Robot Ex Machina.

Gleadall, A. (2014). FullControl GCode Designer: open-source software for
 unconstrained design in additive manufacturing.

Jensen, M.B., & Das, A. (2020). Technologies and Techniques for Collaborative
Robotics in Architecture - establishing a framework for human-robotic design
exploration.

Kolaveric, B. (2001). Digital Fabrication: Manufacturing Architecture in the
 Information Age.

Mimic. (n.d.). Mimic. https://www.mimicformaya.com/

Munz, H., Braumann, J., & Brell-Cokcan, S. (2016). Direct Robot Control with
mxAutomation: A New Approach to Simple Software Integration of Robots in Production
Machinery, Automation Systems and New Parametric Environments.

Poustinchi, E. (2020). Oriole Beta: A Parametric Solution for Robotic Motion
 Design Using Animation.

Rossi, A., et al. (2022). An Open Approach to Robotic Prototyping for Architectural
Design and Construction.

Schwartz, T. (2012). HAL| Extension of a visual programming language to support
teaching and research on robotics applied to construction.

Soler. Robots for Rhino and Grasshopper.

Van Mele, T., et al. (2017-2021). Compass: A framework for computational research in
architecture and structures.

Williams, E. (2018). Hackaday Article.

