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Abstract. The growing role of robotic systems in various fields, including architecture 
calls for a more accessible and adaptable control solutions. This paper introduces the 
Blender Interactive Robot Control Tool (BIRT), an open-source toolkit designed to 
simplify hardware integration, motion control, tool pathing, and interfacing with robotic 
arms using an Internet of Things (IoT) approach. BIRT combines the precision of offline 
programming with the adaptability inherent in online programming. It comprises a 
Blender interface, a Python communication abstraction layer, and an IoT hardware 
integration interface. This toolkit seeks to simplify the integration of sensors and 
actuators, offer an interactive approach to tool pathing, explore non-traditional 
approaches to robot control, and enhance affordability. Three separate yet 
interconnected tools are developed and tested as part of BIRT, each dealing with a 
different aspect of the system. This research contributes to the field of architectural 
robotics by  proposing a solution to make robotics more accessible and adaptable to 
varying operational demands. 
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1 Introduction 

As automation continues its rise across various industries, there's a rising need 
for more user-friendly and intuitive interfaces for robotic arm control. Traditional 
industrial robot control interfaces are often complex and outdated,  confining 
their use to individuals with extensive technical knowledge (Briggs, 2004). This 
limitation impedes the adoption of robotics technology among non-technical 
users in creative industries, such as architecture and crafts. 

Architects and creative professionals are pushing boundaries by exploring a 
variety of tools and solutions for programming robots and collaborating with 
them. These efforts typically pivot around either offline programming 
approaches (Braumann, 2011; Poustinchi, 2020; Soler, 2023; Schwartz, 2012) 
or online programming approaches (Gannon, 2018; Garcia del Castillo y Lopez, 
2019; Munz, 2016). A main limitation of this approach is that online systems 
often lack the precision of offline, and conversely, offline lack the adaptability of 
online systems. This becomes particularly challenging when integrating robots 
in dynamic fabrication environments, such as construction sites and craftwork 
settings (Braumann, 2022). It is also challenging to integrate diverse 



 

components for custom end-effectors and other robot accessories for dynamic 
environments. (Braumann, 2012; Jensen, 2020; Stefas , 2018; Rossi, 2022; 
Van Mele, 2017-2023) 

To address these challenges, I present a workflow centered around the 
Blender Interactive Robot Control Tool (BIRT). BIRT is an open-source toolkit 
that streamlines hardware integration, motion control, toolpathing, and end 
effector control using an IoT approach. Combining the precision of offline 
programming with the flexibility of online programming, BIRT incorporates a 
Blender user interface, a Python communication abstraction layer, and an IoT 
hardware integration interface (Figure 1). 

 

 

Figure 1. Systems diagram showing the relationship between the BIRT control 
software stack, hardware abstraction layer, and IOT hardware interface. Source: Luis 

Pacheco, 2023 

1. Current robot control software and their constraints 

In the past decade, there has been a significant spike in the development of 
software tools for programming and controlling robots, catering to different 
applications, ranging from traditional industrial robots to creative and 
architectural robotics. These tools could be broadly categorized as Industrial 
robotics, architectural robotics, and creative robotic tools. The following is an 
overview of some of the most used robot arm control and programming 
interfaces highlighting their features and capabilities.   
 



 

1.2 Industrial robotics tools 
 
Traditional robotic programming tools, designed primarily for industrial 
applications, streamline the development and implementation of robotic 
systems for repetitive tasks. Prominent among these are tools like ABB 
RobotStudio for ABB robot simulation and offline programming (abb.com, 
2023), KUKA Sim for KUKA robots (kuka.com, 2023), Universal Robots' 
Polyscope that offers no-code programming for Universal Robots (universal-
robots.com, 2013). Each one of these focuses on a specific robot brand. There 
are alternatives that standardize robotic development like RoboDK for 
simulation, offline programming, and NC conversion for multiple robot brands 
(robodk.com, 2023). 
These software solutions provide capabilities to simulate, program, and control 
robots, usually for various manufacturing tasks. They typically offer graphical 
user interfaces for ease of use but are geared towards industry professionals 
with experience in robot-specific programming languages, PLC programming, 
and electronics. Consequently, they can present challenges when applied in 
non-industrial settings such as architectural robotics, where flexibility, simplicity, 
and ease of experimentation are key considerations. 
 
1.3 Architectural Robotics Tools  
 
Architectural robotics involves the integration of multi-axis robotic systems 
within the design and construction process, enabling architects and designers 
to explore innovative fabrication techniques, materials, and spatial 
configurations, usually incorporating digital fabrication and mass customization. 
These tools facilitate the creation of complex structures and geometries that 
push the boundaries of conventional architectural design (Kolaveric, B., 2001). 
 Some architectural robotics tools, include KUKA//PRC for parametric 
robot control in Rhino and Grasshopper initially aimed at mass customization 
and later incorporated real-time control tools, HAL as a robotics software 
package for architectural applications, Robots as a plugin for Rhino's 
Grasshopper interface to create parametric toolpaths and simulate robot 
programs, and the COMPAS framework as an open-source computational 
framework for collaborative research in architecture (Van Mele, 2021), cater to 
the specific needs of architects and designers. These tools integrate with 
popular design software such as Rhino and Grasshopper, enabling users to 
create complex robotic programs for fabrication and construction. With these 
tools, architects and designers can explore new ways of fabricating structures, 
objects, and spaces using robotic systems, pushing the boundaries of 
conventional architectural design. One key limitation of these architectural 
robotics tools is limited or restricted access to real-time control, robot state, and 
sensor feedback needed for interactive tool pathing and real-time control.  
 
1.4 Creative Robotic Tools 
 



 

Creative robotic tools encompass many applications outside the traditional 
industrial and digital fabrication context, including art, design, and human-robot 
interaction. These tools enable users to control and program robots in novel 
ways, allowing for unique expressions and interactions that push the 
boundaries of robotics technology. 

Creative robotic tools encompass a variety of innovative solutions 
designed for applications beyond traditional industrial settings. One such tool is 
Mimic, an open-source plugin for Autodesk Maya that facilitates the control of 
industrial robots (mimicformaya.com, 2023). Another creative tool, Quipt, 
developed by Madeline Gannon, enables gestural communication and 
interaction between humans and robots, paving the way for more natural and 
intuitive human-robot collaborations (Gannon, 2016). In the domain of 
parametric design, Oriole Beta stands out as a tool that empowers designers to 
'design' the motions of the robot based on the principles of keyframing and time-
based animation, instead of merely generating pre-set motions (Poustinchi, E., 
2020). Further, Robot Ex Machina, an open-source computational framework, 
offers real-time robot programming and control, implementing an action-state 
model that provides a highly interactive online robot programming interface 
(García del Castillo y López, J. L., 2019). They enable different means of 
interaction and artistic expression using robotic systems. These tools allow 
users to control industrial robots interactively or in real-time for creative tasks, 
such as animation, gestural communication, and robotic videography. 

Despite the variety of creative robotic tools available, several gaps and 
issues still need to be addressed to enhance their usability and functionality. 
One major issue is the lack of real-time feedback while developing a reactive 
toolpath, and integration with custom end effectors and sensors which prevents 
users from accurately visualizing the current state of the full robotic cell system. 
This limitation hinders the ability to adapt and react to changes in the work cell 
or the workpiece during the programming process. Finally, some of these tools 
often involve complex workflows that can be time-consuming and difficult for 
users, particularly those with limited technical expertise to set up.  

Simplifying the integration of sensors, reading robot states, and real-
time control for reactive tool pathing is crucial to enable more interactive and 
adaptable robotic programming.  Current tools often require advanced 
knowledge and complex programming to incorporate sensor data into the 
toolpath generation process, limiting their accessibility and adaptability. 
Lastly, there is a need for a completely open-source workflow that encourages 
collaboration, knowledge sharing, and the development of innovative solutions. 
Many existing tools are proprietary or have limited open-source capabilities, 
hindering the potential for broader adoption and customization by the user 
community. Addressing these gaps and challenges will help advance the field 
of creative robotics and enable more accessible, flexible, and interactive robotic 
programming solutions. 



 

2 BIRT Description 

The Blender Interactive Robot Control tool (BIRT) aims to provide a 
comprehensive workflow that combines the precision and accuracy of offline 
programming with the parametric tool pathing workflows offered by architectural 
tools while integrating online features to enable a hybrid approach to interactive 
robotic tool pathing. This innovative workflow caters to tasks that require 
adaptability to changes in the work cell or the workpiece, which are commonly 
encountered in construction and traditional craft settings. By providing an 
interactive tool for hybrid fabrication, BIRT allows for the seamless integration 
of precise toolpath operations with the dynamic variables present on 
construction sites and within craftwork environments (Gannon, M., 2006). 
Furthermore, BIRT emphasizes the ability to integrate various sensing devices, 
focusing on interactive and reactive tool pathing, which enables more robust 
and adaptive control over robotic systems. Through this approach, BIRT can 
significantly enhance the capabilities of robotic programming in these 
industries, fostering greater innovation, efficiency, and adaptability in the 
creative applications of robotic technology. The following describes 
implementing a Minimum Viable Product (MVP) for testing this workflow.  
 
2.1 BIRT Minimum Viable Product (MVP) 
 
To develop the MVP, I chose Blender for its robust 3D environment, animation 
tools, and comprehensive Python API, which facilitates the capturing of work 
cell features and the generation of dynamic toolpaths. Its popularity in creative 
fields and open-source nature make it an excellent choice. I focused on two 
collaborative robot platforms: U-Factory X-Arm and Universal Robots due to 
their safety, user-friendly design, cost-effectiveness, and adaptability. To 
simplify communication and integration, I adopted OSC (Open Sound Control), 
which excels in transmitting data over networks using UDP. It effectively bridges 
software and hardware because it is human-readable, extensible, and widely 
supported in creative coding communities. Lastly, the ESP32 was chosen for 
its affordability, networking capabilities, and user-friendliness (Figure 3). The 
ESP32 expedites integration with various low-cost electronics, sensors, and 
actuators, minimizing the need for voltage conversions and physical 
connections.  

The development of BIRT MVP consists of the creation and testing of three 
key tools, each handling a different aspect of the system. The first tool is the 
Blender Interface, a user-friendly platform for intuitive control and visualization. 
The second is the communication backend, which is responsible for efficient 
and streamlined data exchange between various system components. The third 
and final tool is focused on the hardware abstraction layer that interfaces with 
the sensors, actuators, and hardware devices.  
 

2.2 The Blender Interface 



 

 
The Blender Interface operates as a Blender addon. It offers intuitive, CAD-like 
control of a simulated robot arm, which acts as a controller for the physical robot 
(Figure 2). This provides UI elements that manage connections with the robot, 
simulate and visualize the robot and work cell, and establish links with various 
sensors, actuators, and end effectors. It also sets the toolpath from target 
empties (frames), curves, or edges (polylines). Users can select a toolpath and 
set custom parameters to control the robot's motion, speed, extrusion rate, 
cooling fan, etc. based on their unique setup. 
 

 

Figure 2. BIRT is built on Blender, a popular and actively developed open-source CAD 
tool. Here I show the control interface for moving the simulated robot, which accurately 

matches the real-world robot. Source: Luis Pacheco, 2023 

 
2.3 The Python Backend 
 
The Python backend script serves as an essential link between different 
systems. It leverages the OSC messaging protocol and various libraries that 
support robot control to facilitate communication between elements. For 
instance, BIRT uses the Python library ur-rtde for communication with Universal 
Robots, the XArm Python SDK for with XArm robots and KukavarProxy for 
KUKA robots. 

This backend script introduces a human-readable messaging standard, 
promoting seamless coordination among the interface, data streams, sensors, 
actuators, end effectors, and other components. It forms an abstraction layer 
that manages the messages necessary for custom components to read or send 
data. Although it's designed to seamlessly integrate with Blender's API, it holds 



 

the potential to function stand-alone or within other Python environments, such 
as Rhino. 

 
2.4 The ESP32 Firmware 

 
The ESP32 Firmware provides a streamlined communication channel that 
interprets OSC messages to the GPIO, PWM, I2C, and more, and vice versa. 
This allows for the easy integration of various low-cost sensors and actuators. 
Each ESP32 is wirelessly incorporated into the system, both expecting and 
sending messages that describe its functionality to the Python backend. This 
approach accelerates prototyping and experimentation by eliminating the need 
for voltage conversion across systems, reducing the need for physical 
connections and cables. Additionally, the ESP32 opens up the possibility of 
creating custom remote interfaces for controlling individual components, thus 
enhancing interactivity and ease of use. 

 

Figure 3. An example of a physical control panel for an extruder that allows to change 
the flow, fan speed and temperature dynamically. Source: Luis Pacheco, 2023 

 



 

3 Prototypical Workflow 

The prototypical workflow commences with the digitization of the work cell's 
features. Users employ sensors, scanning tools, or the robot itself to capture 
critical points, such as fixtures, tooling, and obstacles, within the workspace. 
The digitized features are instantaneously visualized in the 3D viewport, 
enabling accurate robot motion planning and interaction with the work cell. By 
ensuring the virtual environment aligns with the physical space, users can 
optimize the robotic workflow. 

The second step of the workflow is the interactive development of 
toolpaths and their simulation. Users have the flexibility to add, modify, or 
update features both physically and digitally at any point in time. They can 
simulate the robot and various other systems before transmitting the motion 
paths, which allows for adjustments, safer motion, and minimizing errors. 
Parametric tool pathing utilizes these key points as parameters, offering a 
dynamically updated toolpath definition. Furthermore, toolpaths can be 'hand-
drawn' by referencing various points and surfaces, thereby promoting a more 
intuitive and direct approach to toolpath creation. 

In the final step of the prototypical workflow, users define the control 
flow logic for the toolpaths and parameters. At any given point, it's possible to 
modify the toolpath for real-time adjustments to the robot program and other 
systems in the cell. Logic states can be programmed to specify how the robot 
should respond to changing conditions within the work cell, workpiece, or user 
input. This enables users to create custom behaviors and interactions tailored 
to their needs. By incorporating real-time adjustments into the robot program, 
end effectors and other actuators users can create a more dynamic and 
adaptable system, capable of responding to the inherent variability present in 
construction sites and craftwork environments. 

4 Potential Use Cases 

Each of the following hypothetical cases could benefit from BIRT's capabilities 
like digitizing real-world contexts and entities, interactively developing toolpaths 
and interactions, converting these into actionable robotic movements in the 
physical world, and controlling the use of customized end-effectors or external 
axes, it can also be used to synchronize multiple robotic systems to work 
together. 

 

4.1 Construction site work area feature digitization 

BIRT tool can be employed to capture data on the features of the work area, 
such as walls, tubes, and other elements in a construction site. The captured 
data can be used to calibrate the virtual work cell in Blender, enabling users to 



 

plan and simulate robotic tasks with a high degree of accuracy. This process 
reduces the risk of collisions and ensures that the robot's movements are safe 
and efficient in a dynamically changing work area. For example, the robot can 
be used to drill a specific pattern and size for holes on a wooden surface, 
adapting to real-world conditions and adjusting its movements accordingly, 
simultaneously allowing for adjusting the tool speed and penetration.  

 

4.2 Hand-Drawn Toolpath  

BIRT can be employed to capture multiple surfaces, enabling users to create 
"hand-drawn" toolpaths that adapt to the normals of the surfaces. This 
interactive approach to toolpath development allows users to design and 
implement custom toolpaths that accurately follow the contours of the 
workpiece, resulting in a more precise and tailored outcome. Some examples 
can include painting, milling, or 3D printing on nonplanar surfaces. Each 
toolpath could be dynamically generated on a tablet or drawing app, then the 
program would map the curve into the given surface, allowing for an interactive 
workflow.  

 

4.3 Parametric Pick and Place Operations 

BIRT can be used to program a robotic arm for pick and place tasks. Users can 
define a different source point for each object to be picked up and placed in an 
organized parametric array. An object could be then tracked in real-time to 
specify the source or target location, it is also possible to track the position of 
an obstacle and have a parametric toolpath that avoids collision with the 
obstacle.  This enables the robotic arm to adapt to varying object positions, 
ensuring accurate and efficient object handling and placement, even in 
environments with dynamic object layouts. 

 

4.5 AI Robotic Painting 

BIRT can potentially integrate a workflow that involves incorporating an external 
"feed" of movements to paint based on an AI API integration. By leveraging AI 
algorithms, the robot arm can generate painting toolpaths that produce unique 
and visually engaging designs. The BIRT tool provides the necessary 
framework for connecting the AI-generated toolpaths with the robot's 
movements, enabling users to create AI-driven robotic painting applications. 

5 Conclusion and Future Work 

The development of BIRT tool demonstrates the potential for combining the 
powerful features of Blender with the specific needs of robotic control in various 



 

industries. The tool provides a user-friendly, accessible, and extensible solution 
for both novice and experienced users to create and control robotic programs 
with ease. As the field of robotics continues to grow and evolve, there are 
numerous avenues for future research and development of the BIRT tool. Some 
potential directions include: 

- Expanding the range of supported robot models and brands: Extending the 
BIRT tool to accommodate a wider variety of robot arms from different 
manufacturers will increase its versatility and applicability in various industries. 

- Incorporating machine learning and computer vision techniques: Integrating 
advanced algorithms for machine learning and computer vision can further 
enhance the tool's capabilities for real-time control and interaction with the robot 
and work cell environment. 

- Developing a physical user interface: Creating a physical interface for the 
BIRT tool, such as a handheld controller or haptic device, could improve user 
experience and enable more intuitive control of the robot. 

- Exploring collaborative applications: Investigating the potential for the BIRT 
tool to facilitate human-robot collaboration in various industries can open up 
new possibilities for productivity and creativity. 

- Enhancing the CAM and 3DP slicing capabilities: Developing more advanced 
CAM features and 3DP slicing tools within the BIRT tool will enable users to 
carry out more complex tasks and streamline the fabrication process. 

By addressing these future research directions, the BIRT tool can continue to 
evolve and adapt to the changing needs of the robotics community, driving 
innovation and collaboration in various fields. As an open-source project, the 
BIRT tool can benefit from the collaborative nature of the open-source 
community, allowing individuals and organizations to contribute to its 
development, enhancing its features, and addressing the specific needs of 
various users and industries. The open-source approach encourages 
innovation, accelerates the development process, and ultimately results in a 
more robust and versatile tool. 
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