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Unsupervised Clustering for Internal Combustion Engines Health

ABSTRACT

We present an unsupervised machine learning
approach designed to aid in the health monitoring of
internal combustion engines, enabling the early detection of
possible failures or degradation over time. Our
methodology uses temporal data collected from a
datalogger device connected to a vehicle's On-Board
Diagnostics system. This data serves as input for a
clustering machine learning model, which is trained
incrementally over time to detect anomalies in multivariate
time series. The decision-making process to categorize
cluster behaviors as anomalies, which might be indicative
of engine degradation over time, is based on several key
metrics, such as the Jaccard similarity coefficient, relative
cluster population, stability, and movement of the centroid
over time. The proposed approach is validated on a public
rotating machine dataset and tested on an internal
combustion engine of a medium-sized vehicle in idle
condition.

RESUMO

E apresentada uma abordagem de aprendizado de
maquina ndo supervisionada destinada a auxiliar o
monitoramento da saude de motores de combustdo interna,
possibilitando a detecgdo precoce de possiveis falhas ou
degradag@o ao longo do tempo. Nossa metodologia utiliza
dados temporais coletados de um dispositivo datalogger
conectado ao sistema On-Board Diagnostics de um veiculo.
Esses dados servem como entrada para um modelo de
aprendizado de maquina de agrupamento, treinado
incrementalmente ao longo do tempo para detectar
anomalias em sé€ries temporais multivariadas. O processo
de tomada de decisdo para categorizar comportamentos de
clusters como anomalias, que podem ser indicios do
comeco da degradacdo do motor ao longo do tempo,
baseia-se em diversas métricas-chave, como o coeficiente
de similaridade de Jaccard, populagdo relativa do cluster,
estabilidade e movimento do centréide ao longo do tempo.
A abordagem proposta ¢ validada em um conjunto de dados
publicos de uma maquina rotativa e testada em um motor
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de combustio interna de um veiculo de tamanho médio em
condi¢do de ponto morto.

INTRODUCTION

Health monitoring plays a pivotal role in fault
diagnosis and damage prediction in mechanical or
dynamical systems [1]. Traditional methodologies for
utilizing monitoring data can be classified into model-based
and data-driven methods. In the context of combustion
engines, the model-based approach usually involves
constructing a semi-analytical or a finite-element model of
specific engine components, limiting the analysis to
individual parts rather than the entire engine, as can be seen
in [2-6]. Furthermore, these methods require prior
knowledge of the true model to ensure that the estimated
parameters fall within an acceptable confidence interval. By
measuring discrepancies between model predictions and
new measurements, potential damages can be identified [7].
On the other hand, data-driven methods focus on directly
analyzing data patterns to detect condition changes,
bypassing the need for prior knowledge. Traditional
data-driven techniques, which stem from multivariate
statistics, approach damage detection as a statistical pattern
recognition problem. Despite their widespread application
in health monitoring, these methods have limitations.
Analyzing all available data is often impractical, and for the
sake of computational efficiency, traditional data-driven
methods are typically restricted to small datasets [7]. To
address these challenges, Machine Learning (ML)
approaches are increasingly being utilized, offering
enhanced capabilities for handling larger datasets and
improving the accuracy of damage predictions [8-12].
Several studies have demonstrated the efficacy of ML in
detecting faults and predicting system failures and
damages.

Carrara et al. [13] propose a Deep Learning (DL)
model for time series forecasting to monitor the health of
the San Frediano bell tower. By inspecting and detecting
anomalies in a large vibration dataset recorded over the
long term, they frame the problem as an unsupervised
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anomaly detection task. They trained a Temporal Fusion
Transformer to learn the structure's normal dynamics using
the covariance-driven Stochastic Subspace Identification
technique and then used it to detect anomalies by analyzing
the differences between the predicted and observed
frequencies. The model achieved promising initial results,
being able to identify important events, like the Amatrice
earthquake and the Santa Croce celebrations, while also
being able to detect disturbances caused to the oscillating
bells by the religious events that took place in the city’s
cathedral at weekends. However, the authors pointed out
that a comparison between the proposed approach and
anomaly detection techniques was not performed.

Junqueira et al. [14] proposed an approach that
combines a DL model with Gaussian random fields to
predict defect field profiles from the interfaces of
composite laminates by reading scattered fields from
guided modes. The results demonstrated that the developed
model is robust against noisy data, interface modeling
errors, and reduced models. Additionally, it was tested
across various interfaces, directions, and guided modes,
consistently achieving high accuracy. This indicates
significant potential for application in real-world acoustic
inspections in order to monitor the health of composite
laminates  interfaces  while considerably  reducing
computational time compared to traditional inverse
methods.

Xiong et al. [15] combine data-driven techniques with
a Long Short-Term Memory (LSTM) model to construct a
digital twin of an aero-engine for predictive engine
maintenance purposes. The results demonstrate the
effectiveness of the proposed method, achieving high
prediction accuracy and maintaining a low Root Mean
Square Error (RMSE) for predicting the Remaining Useful
Life (RUL) of the aero-engine. Furthermore, they
underscore the importance of exploring unsupervised
learning methods for fault diagnosis, with the goal of
improving predictive maintenance practices and ensuring
the safety of civil aircraft operations.

Jan et al. [16] proposed a distributed sensor-fault
detection and diagnosis system based on machine learning
algorithms. A fault detection block is implemented directly
in the sensor to provide immediate output after data
collection. This block comprises an auto-encoder that
transforms the input signal into a lower-dimensional feature
vector, which is then fed into a Support Vector Machine
(SVM) for classification as normal or faulty. Subsequently,
fault diagnosis is conducted at a central node, such as a
network server, to alleviate the computational burden on the
sensor. In this study, a Fuzzy Deep Neural Network
(FDNN) is employed for diagnosis to offer additional
information, such as the type of fault. The input data
propagates through a deep neural network and undergoes a
fuzzy representation process. The outputs of these
components are then fused through densely connected
layers. To evaluate the proposed model's performance, data
obtained from a healthy temperature-to-voltage converter is

utilized, considering five different types of faults: drift,
bias, precision degradation, spike, and stuck faults. The
results indicate that the proposed model has the efficacy of
a fuzzy learning-based model compared to classic
neuro-fuzzy and non-fuzzy learning approaches. However,
variety in the formats, high levels of uncertainty, noise, and
types of data may affect the performance.

Chukwudi ef al. [17] proposed a DL-based ensemble
model approach in order to predict the condition of vehicle
engines. They evaluated the proposed models by using
metrics such as RMSE, Root Mean Square Deviation
(RMSD), Mean Absolute Error (MAE), accuracy, confusion
matrix, and Area Under the Curve (AUC), achieving good
performance for a computer-generated dataset. Despite the
results, they emphasized the challenges associated with
detecting vehicle failures in advance, citing the complex
composition of components and sensors. Importantly, they
noted that since the model was not tested in a real-world
scenario, the results obtained with computer-generated
datasets may differ in practical applications; therefore,
further investigations in that sense should be performed.

The utilization of ML techniques in engine systems is
experiencing a notable surge, encompassing a wide array of
applications. These range from forecasting emissions [18,
19] to intricate tasks such as modeling and control, as well
as prediction, classification, diagnosis, and fault monitoring
[20-23], which constitute the focal point of the current
study. Leveraging ML alongside cloud computing and
vehicle-to-infrastructure (V2I) communications promises
further enhancements in the performance of Internal
Combustion Engines (ICE). For instance, ML facilitates the
development of efficient, precise, and real-time peer-to-peer
learning methods for monitoring performance, data
collection and processing, and drawing insights from a vast
network of similar engines. This capability paves the way
for highly accurate and adaptive engine models, as well as
innovative fault detection methodologies enabled by the
abundance of training data [24]. It is important to recognize
here that, alongside the abundance of data, there are
challenges associated with data annotation and defining
operational scenarios. That is, in real-world scenarios, it is
not always feasible to gather or simulate data for every
conceivable analysis case in order to employ supervised
learning algorithms. This challenge is particularly
pronounced in the realm of engines, which boast a diverse
range of components and a multitude of potential faults that
can manifest in various forms during operation. For
example, consider the study by Junqueira et al. [23], which
classified three distinct diesel engine faults using audio
signals, albeit restricted to these specific scenarios in
addition to a healthy engine.

To address the challenges associated with engine
health monitoring and data annotation, this study proposes
an Internet of Things (IoT)-based solution incorporating an
unsupervised ML method to automatically monitor the
health of the vehicle ICE. The solution pipeline begins with
data acquisition using a datalogger device, which collects
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engine data directly from the On-Board Diagnostics (OBD)
port. This data is then communicated to a middleware IoT
platform, where the ML model collects and processes it in
order to generate evolutionary metrics that are monitored
over time. The core concept of the ML algorithm is to
group the data into clusters over time and use these
evolutionary metrics to detect changes in the formation or
composition of these clusters. Such changes could indicate
a degradation in the health of the ICE.

The remainder of this paper is organized as follows:
the methodology section takes place to explain the
incremental unsupervised clustering model and the
evolution metrics used to monitor the health of a vehicle’s
ICE, followed by a database section, a section detailing the
experimental setup, the results section, and finally, in the
final section, we draw the conclusions.

METHODOLOGY

The present work makes use of multivariate time
series data with an ML approach based on the study
developed by Landauer et al. [25], which designed a
dynamic, unsupervised clustering model that is trained
gradually over time and tracks the transitions of several
successive groups in order to identify anomalies in log data
using time series data. The model's performance is
evaluated using metrics that were designed to assess the
clusters’ evolution, such as an overlap metric based on the
Jaccard coefficient and metrics related to the evolution of
the clusters through time, such as the clusters' stability, their
relative population, their centroid's movement, and also the
clusters' weights according to their centroid's distance to the
average center.

The overlap metric used in [25] is based on the
Jaccard Coefficient, a measure of similarity between two
data sets [26]. Originally proposed by Greene et al. for
binary sets [27], this metric was adapted by [25] and is
defined as follows:

I (Rcurr n R’prev) v (Rnext n R'curr) | (1)
| (R' UR' )U(R UR" )|

curr prev next curr

overlap(C, C") =

where C and C' represent the old and the updated clustering

maps, respectively. That is, C is the cluster model trained

with data in state t, while C' is the same model

incrementally trained with new data related to the

transitioning state At, generating the state t' = t + At.

Furthermore, R and R’ are the data (state t) used to
curr prev

create the cluster map C, inferred by C and C', respectively.

R and R' are the new data (represented by
next curr

transitioning state At) used to incrementally train the cluster
map from C to C', inferred by C and C', respectively. In
order to clarify the meaning of these variables in the
context of the present work, an illustrative sketch is
presented in Figure 1.
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Figure 1. An illustrative sketch of the overlap metric.

The overlap between cluster maps C and C' is a number
between {0, 1}, where 1 indicates that all data samples are
present in both cluster maps and 0 indicates that both
cluster maps are totally different from each other [25].
Here, it is important to highlight a major difference
between the overlap metric defined in [25] and the one
proposed in the present work. Since we incrementally train
our model with a much smaller volume of data relative to
the complete volume of data in the current state ¢, rather
than defining a new model at each new state, the clusters do
not undergo an abrupt shift between states. That is, a cluster
does not fully transform into another between consecutive
steps, making it irrelevant to compute overlap metrics
between different defined clusters. Therefore, we always
consider the metrics computed from cluster C L fo C '1 and

never from cluster C o c' , Or C , to c o for example (this

applies to the subsequent equations as well).

The clusters' stability evolution metric was based on
what was proposed by Toyoda and Kitsuregawa [28], which
represents the amount of disappeared, merged, appeared,
and split data within a specific cluster and was used to
measure the evolution of web communities from web
archives. We used the relative stability metric elaborated
and used by [25], which is defined as follows:

oy 1 Rlprev +RL"MTY*2 |Rlprevchurr|
stability(C, C") = @ UR JUR R T (2)

curr prev next curr

, ,R" ,and R are
rev curr curr next

where the definitions of R'p
the same as those defined in Eq. 1, representing the
previous and current data samples that were used to create
the cluster map at a given state. A high score indicates that
only minor changes occurred in the cluster during the state
transition, while a low score indicates that major changes

took place.

With regards to the clusters' relative population
evolution metric, it measures the size of the population
(also referred to as the amount of data within the cluster)
for each cluster in time step t
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Here, La' , can be defined as the population of cluster
map C . in time step t, where i € n (the number of clusters

in that time step). This metric helps us to monitor the
population clusters through time, making it possible to
detect anomalies in their growth behavior (such as if a
cluster population starts to grow or drop significantly in a
short span of time, it might indicate that the data pattern is
changing).

As addressed by [25] and [29], we also track the
clusters centroid's movement throughout time because, by
tracking their movement, we can understand their behavior,
like the clusters' location and direction. Moreover, we
assign weights to the clusters according to their centroid's
distance relative to the centroids average. The distance is
calculated using Eq. 4, where CECL,, tis the centroid's

position of the cluster Cl, at time step t and ACEt is the

average between all clusters centroid at that time. Finally,
the clusters' weight is determined by Eq. 5, where WCi . is

the weight of the cluster C ; in the time step t. This approach

was developed with the aim of penalizing clusters
composed of data considered to be outliers.

distance(C) = || CE,, . — ACE ||, “)
. WCL t
weight(C) = ==+, %)

i=1

Additionally, we use the Elbow Method to identify the
ideal number of clusters to be used and a feature selection
algorithm, which selects the features collected with the
datalogger by analyzing the correlation between them and,
therefore, discarding redundant and unwanted features.
Finally, the selected variables are used as input for the ML
model under analysis. An overview of the whole
methodology is presented in Figure 2.
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Figure 2. Flowchart of the proposed methodology.

Drawing from Figure 2, the pipeline execution steps
are detailed as follows:

e The data is gathered from a datalogger device
linked to the vehicle's OBD port.

e  Subsequently, this collected data is transmitted to a
middleware IoT platform.

e The solution then focuses on collecting only the
data related to idling periods from the middleware
IoT platform.

e Following this, the filtered data undergoes
pre-processing steps.

e The training dataset is gradually constructed until
it reaches the necessary volume to either train an
initial ML clustering model or increment an
existing one.

e Once the model has inferred the data, monitoring
metrics are computed. These metrics can be
relayed back to the middleware IoT platform for
user consultation or to trigger threshold-based

alarms.
e Finally, the updated data is stored for further
analysis.
DATABASE

In order to validate the proposed method, we used a
labeled, public dataset composed of test beds with rotating
machines stressed under various conditions, which was
created and proposed by Jung ef al. [30]. The test beds were
created by simulating various faults at a sampling rate of
25.6kHz, such as bearing faults, shaft parallel
misalignment, and rotor unbalance, under different
operating conditions, such as load and constant rotating
speed conditions. This dataset has been split into two
smaller datasets. The first dataset includes data obtained
under various loads and constant rotating speed conditions,
while the second dataset includes data obtained under
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randomly fluctuating rotating speed conditions without any
load. For this work, only the initial dataset is utilized,
focusing on the load situation of 4 Nm and exclusively
considering unbalance faults. We opted to utilize solely the
first dataset because, as demonstrated by the authors of the
dataset's publication, it reflects real-world scenarios with
load variations and is therefore suitable for evaluating the
effectiveness of recently developed models based on rotor
dynamics theories.

The data from a medium-sized vehicle was gathered
via a datalogger, which is an OBD device that scans the
vehicle's dashboard, collects the data, and then sends it to a
middleware IoT platform responsible for storing all the
data. We obtained a total of 28 different features distributed
in numerical and categorical data related to the engine.
Since the features had divergent acquisition rates that
resulted in NaN values, we applied forward and backward
propagation techniques in sequence to fill those values
(spreading the last valid observation forward and the next
valid observation backward, respectively). After that, we
resampled the data according to the timestamp by getting
the mean and mode of the numerical and categorical
features, respectively, using 10-second frequency windows
so that the features had the same acquisition rate.
Additionally, the categorical columns were transformed to
numerical, and, finally, we scaled the features so that each
of them has a zero mean and unit variance. After the data
collection and the preprocessing step, we conducted a
feature selection evaluation in order to filter the best
features and, therefore, reduce the dimensionality of the
problem. We ended up with 7 features: engine speed,
throttle position, engine torque, engine water temperature,
engine load, intake air temperature and engine oil
temperature.

EXPERIMENTAL SETUP

In the experimental setup of the vehicle’s ICE, a
datalogger device is installed in the vehicle in order to
collect data directly from the OBD port. These data are then
transmitted to a middleware loT platform for collection and
processing by the ML model. Furthermore, due to the lack
of professionals and equipment needed for simulating
engine faults, we conducted the experiment on an idling
medium-sized  vehicle  with  proper  functioning
(approximately 800-1000 RPM) consisting of two main
steps:

e Step 1: Start the vehicle equipped with the
datalogger and leave it in neutral for about 15-20
minutes with the air conditioning off.

e Step 2: Turn the air conditioning on high potency,
with the vehicle still in neutral, and leave it for
another 15-20 minutes.

This experiment simulating changes to the air
conditioning system was designed to get around the
inability to simulate engine faults, since when this system is
turned on at high power, it makes the engine work harder,

resulting in increased heat generation, fuel consumption,
and strain on the engine. This, in turn, affects a wide range
of vehicle parameters [31]. However, it is important to note
that in reality, with a much larger volume of data, data
collection should include scenarios with the air
conditioning both on and off to cover all possible cases of a
vehicle idling, and the considerations made in this
experiment are solely to validate the current proposed
solution. Moreover, the engine's operating condition is tied
to idling, aiming to minimize variations in its operation. For
instance, let us hypothetically consider data being collected
from a vehicle traversing a large city. If this vehicle
embarks on a journey through mountainous terrain, the
developed models could mistakenly indicate an engine
malfunction, when in reality, the engine is simply operating
under different conditions.

For both datasets, the experimental stage
configuration is the same. Upon completion of the
pre-processing phase, the medium-sized ICE vehicle's data
set is progressively sorted based on its timestamp and
divided into two smaller sets: one for driving with the air
conditioning turned on and the other for driving with it
turned off. The machine learning model is then fed
incrementally with the two sets after they have been divided
into smaller 50 ms chunks. Since this is a model for
identifying anomalies, it is crucial to remember that the
data from the engine's typical state should be used first (in
this case, when the air conditioning is turned off). This will
enable the model to look for patterns in the engine's proper
operation and spot anomalies that point to engine
degradation. The public dataset on machine rotation faults
operates on the same premise. In this case, the data that
represents the typical rotating machine state is the one that
is not faulty. Moreover, as mentioned in the Methodology
section, we used the results obtained through the Elbow
Method to establish the number of clusters for each dataset.

RESULTS

The results are presented for the two aforementioned
datasets. The first one consists of a controlled experimental
environment of a rotating machine with unbalanced rotors.
Although not directly related to ICEs, it is used to validate
the proposed method, which could be generalized to work
with a wide range of dynamical systems. The second
dataset pertains to the data collected from a real ICE of a
medium-sized vehicle with simulated faults, used to test the
proposed approach in a real-world scenario. Furthermore,
all the presented results utilize a ML model based on
mini-batch K-means, chosen for its simplicity in
incremental training. It is worth noting that other clustering
algorithms with incremental training capabilities could also
be employed for this monitoring task.

ROTATING MACHINE DATASET - In Figure 3, the
Elbow method is depicted to determine the number of
clusters to be defined by the K-means algorithm for the
rotating machine dataset. The Elbow method computes the
inertia of the cluster model, which is the sum of the
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distances of samples to their closest cluster center (SSE), in
order to establish the optimal number of clusters.

0 5 10 15 20 25
Number of clusters

Figure 3. The number of clusters defined by the Elbow
method for the rotating machine dataset.

By analyzing Figure 3, a number of 5 clusters was
selected to monitor the rotating machine. This point on the
curve represents the maximum distance between the line
connecting the first plotted point (number of clusters = 1)
and the last plotted point (number of clusters = 25).
Afterwards, the initial clustering model is defined using
approximately 40 seconds of measured data. Subsequently,
each new state is computed by incorporating an increment
of approximately 2 seconds of newly measured data.
Figures 4, 5, 6, 7, and 8 illustrate the evolution of the
Jaccard Overlap, stability, relative population, centroid
walking distance, and centroid distance from the initial state
metrics for the cluster that changed the most during the
monitoring of this rotating machine. The black line
represents the rotating machine during normal functioning,
while the blue dotted, green dash-dotted, and red dashed
lines represent different levels of unbalance faults.
Additionally, the vertical magenta dashed line indicates the
moment when the fault conditions began to occur.
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Figure 4. The Jaccard Overlap metric computed over time
for the rotating machine.
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Figure 5. The stability metric computed over time for the
rotating machine.
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Figure 6. The relative population metric computed over
time for the rotating machine.
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Figure 8. The centroid distance from the initial state metric
computed over time for the rotating machine.

By analyzing Figures 4-8, it is evident that when the
faults begin to occur, the change in this cluster's behavior is
very noticeable and is immediately indicated by the Jaccard
Overlap metric, which suggests that changes in the
machine’s functioning occurred during the transitioning
state. While this change in functioning is constant and
continues to occur, metrics such as relative population,
stability, and centroid distance from the initial state keep
increasing until they reach a new level. Additionally, it can
be observed that when the fault begins, the cluster centroid
starts to walk (see Figure 7) until it reaches a new
quasi-steady state on new coordinates. Another interesting
observation is that the magnitude of clustering change is
directly proportional to the severity of the fault, making it
easier to detect severe faults.

ENGINE DATASET - In Figure 9, the Elbow method is
depicted to determine the number of clusters to be defined
by the K-means algorithm for the engine dataset.
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Figure 9. The number of clusters defined by the Elbow
method for the engine dataset.

By analyzing Figure 9, a number of 6 clusters was
selected for monitoring the vehicle’s ICE. This point on the
curve represents the maximum distance between the line
connecting the first plotted point (number of clusters = 1)
and the last plotted point (number of clusters = 25).

Afterwards, the initial clustering model is defined using
approximately 7 minutes of measured data. Subsequently,
each new state is computed by incorporating an increment
of approximately 10 seconds of newly measured data.
Figures 10, 11, 12, 13, and 14 illustrate the evolution of the
Jaccard Overlap, stability, relative population, centroid
walking distance, and centroid distance from the initial state
metrics for the cluster that changed the most during the
monitoring of this vehicle’s ICE. The black line represents
the ICE during normal functioning, while the blue dotted
line represents the ICE working with a simulated fault
condition. Additionally, the vertical red dashed line
indicates the moment when the simulated fault condition
began to occur.
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Figure 10. The Jaccard Overlap metric computed over time
for the rotating machine.
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Figure 11. The stability metric computed over time for the
rotating machine.
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Figure 12. The relative population metric computed over
time for the rotating machine.
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Figure 13. The centroid walking distance metric computed
over time for the rotating machine.
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Figure 14. The centroid distance from the initial state
metric computed over time for the rotating machine.

Upon analysis of Figures 10-14, mirroring the
findings from the previous dataset, it becomes apparent that
when the simulated fault initiates, there is a pronounced
alteration in the behavior of this cluster. This change is
readily discernible and promptly indicated by the Jaccard

Overlap metric, implying shifts in engine functionality
during the transitional state. While this functional shift
persists consistently, metrics such as relative population,
stability, and centroid distance from the initial state
continue to fluctuate until reaching a new equilibrium.
Furthermore, it is observed that with the onset of a fault, the
cluster centroid begins to transition (refer to Figure 13),
eventually stabilizing at a new quasi-steady state with
revised coordinates. These results underscore the efficacy
of the proposed approach in swiftly detecting genuine
faults, enabling automated alerts to signal system health
deterioration through threshold-based alarms, potentially
adjusted by the weight delineated in Eq. 5. The pipeline
depicted in Figure 2 can thus be leveraged to integrate an
Internet of Things (IoT)-based solution aimed at
autonomously monitoring the health of the vehicle's ICE.

CONCLUSIONS

The present work proposes an IoT-based solution
incorporating an unsupervised ML method to automatically
monitor the health of a vehicle's ICE. This approach was
validated using a public dataset of an unbalanced rotating
machine and tested on an idling medium-sized vehicle's
ICE by simulating faults with the air conditioning system.
Various monitoring metrics are presented, such as Jaccard
Overlap, stability, relative population, centroid walking
distance, and centroid distance from the initial state,
revealing significant behavior changes for all considered
fault scenarios.

The results are promising, demonstrating that the
proposed evolutionary metrics approach has the potential to
detect actual faults and could be utilized for automated
health monitoring of the considered systems. Importantly,
this solution could be extended to other dynamical systems,
as it operates independently of physics-based information,
relying solely on data. However, a limitation of the current
approach is its inability to classify faults. Nonetheless, it
could serve as a trigger for other models aimed at
classifying such faults. Moreover, further experiments
should be conducted to explore higher volumes of data and
real engine faults.

In this context, the solution pipeline—encompassing
data collection from a datalogger device, communication
with a middleware IoT platform, and data processing and
monitoring via unsupervised ML clustering—represents a
powerful tool for aiding the health monitoring of vehicle
ICEs.
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